\(\int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx\) [424]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 290 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=-\frac {2 (a-b) \sqrt {a+b} (2 A b-3 a B) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^3 d}+\frac {2 \sqrt {a+b} (2 A b+a (A-3 B)) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^2 d}+\frac {2 A \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)} \] Output:

-2/3*(a-b)*(a+b)^(1/2)*(2*A*b-3*B*a)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c)) 
^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c) 
)/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^3/d+2/3*(a+b)^(1/2)*(2*A*b 
+a*(A-3*B))*cot(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d* 
x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec( 
d*x+c))/(a-b))^(1/2)/a^2/d+2/3*A*(a+b*cos(d*x+c))^(1/2)*sin(d*x+c)/a/d/cos 
(d*x+c)^(3/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 17.49 (sec) , antiderivative size = 416, normalized size of antiderivative = 1.43 \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\frac {8 \cos ^2\left (\frac {1}{2} (c+d x)\right )^{7/2} \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\cos (c+d x) \sec ^2\left (\frac {1}{2} (c+d x)\right )} \left (-2 (a+b) (-2 A b+3 a B) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} E\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right )+2 a (-2 A b+a (A+3 B)) \sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}} \sqrt {\frac {a+b \cos (c+d x)}{(a+b) (1+\cos (c+d x))}} \operatorname {EllipticF}\left (\arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right )+(2 A b-3 a B) \cos (c+d x) (a+b \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \tan \left (\frac {1}{2} (c+d x)\right )\right )}{3 a^2 d \cos ^{\frac {3}{2}}(c+d x) (1+\cos (c+d x))^{3/2} \sqrt {a+b \cos (c+d x)}}+\frac {\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} \left (\frac {2 \sec (c+d x) (-2 A b \sin (c+d x)+3 a B \sin (c+d x))}{3 a^2}+\frac {2 A \sec (c+d x) \tan (c+d x)}{3 a}\right )}{d} \] Input:

Integrate[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(5/2)*Sqrt[a + b*Cos[c + d*x] 
]),x]
 

Output:

(8*(Cos[(c + d*x)/2]^2)^(7/2)*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[C 
os[c + d*x]*Sec[(c + d*x)/2]^2]*(-2*(a + b)*(-2*A*b + 3*a*B)*Sqrt[Cos[c + 
d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + d*x])/((a + b)*(1 + Cos[c + d 
*x]))]*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)] + 2*a*(-2*A*b 
 + a*(A + 3*B))*Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]*Sqrt[(a + b*Cos[c + 
d*x])/((a + b)*(1 + Cos[c + d*x]))]*EllipticF[ArcSin[Tan[(c + d*x)/2]], (- 
a + b)/(a + b)] + (2*A*b - 3*a*B)*Cos[c + d*x]*(a + b*Cos[c + d*x])*Sec[(c 
 + d*x)/2]^2*Tan[(c + d*x)/2]))/(3*a^2*d*Cos[c + d*x]^(3/2)*(1 + Cos[c + d 
*x])^(3/2)*Sqrt[a + b*Cos[c + d*x]]) + (Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[ 
c + d*x]]*((2*Sec[c + d*x]*(-2*A*b*Sin[c + d*x] + 3*a*B*Sin[c + d*x]))/(3* 
a^2) + (2*A*Sec[c + d*x]*Tan[c + d*x])/(3*a)))/d
 

Rubi [A] (verified)

Time = 1.02 (sec) , antiderivative size = 294, normalized size of antiderivative = 1.01, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.229, Rules used = {3042, 3479, 27, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3479

\(\displaystyle \frac {2 \int -\frac {2 A b-3 a B-a A \cos (c+d x)}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{3 a}+\frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\int \frac {2 A b-3 a B-a A \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\int \frac {2 A b-3 a B-a A \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 a}\)

\(\Big \downarrow \) 3477

\(\displaystyle \frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {(2 A b-3 a B) \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-(a (A-3 B)+2 A b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {(2 A b-3 a B) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(a (A-3 B)+2 A b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{3 a}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {(2 A b-3 a B) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} (a (A-3 B)+2 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{3 a}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {2 A \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {2 (a-b) \sqrt {a+b} (2 A b-3 a B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d}-\frac {2 \sqrt {a+b} (a (A-3 B)+2 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{3 a}\)

Input:

Int[(A + B*Cos[c + d*x])/(Cos[c + d*x]^(5/2)*Sqrt[a + b*Cos[c + d*x]]),x]
 

Output:

-1/3*((2*(a - b)*Sqrt[a + b]*(2*A*b - 3*a*B)*Cot[c + d*x]*EllipticE[ArcSin 
[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a 
- b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a 
 - b)])/(a^2*d) - (2*Sqrt[a + b]*(2*A*b + a*(A - 3*B))*Cot[c + d*x]*Ellipt 
icF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -(( 
a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + 
 d*x]))/(a - b)])/(a*d))/a + (2*A*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/( 
3*a*d*Cos[c + d*x]^(3/2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3479
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin 
[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 
1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e 
 + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*(m + n + 
2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B) 
*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n 
}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Rat 
ionalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(I 
ntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0]) 
))
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(933\) vs. \(2(258)=516\).

Time = 34.38 (sec) , antiderivative size = 934, normalized size of antiderivative = 3.22

method result size
default \(\text {Expression too large to display}\) \(934\)
parts \(\text {Expression too large to display}\) \(935\)

Input:

int((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+cos(d*x+c)*b)^(1/2),x,method=_RET 
URNVERBOSE)
 

Output:

-2/3/d*(A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+ 
1)/(a+b))^(1/2)*a*b*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))* 
(2*cos(d*x+c)^3+4*cos(d*x+c)^2+2*cos(d*x+c))+A*(cos(d*x+c)/(cos(d*x+c)+1)) 
^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*b^2*EllipticE(cot(d*x 
+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(2*cos(d*x+c)^3+4*cos(d*x+c)^2+2*cos( 
d*x+c))+B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+ 
1)/(a+b))^(1/2)*a^2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))* 
(-3*cos(d*x+c)^3-6*cos(d*x+c)^2-3*cos(d*x+c))+B*(cos(d*x+c)/(cos(d*x+c)+1) 
)^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a*b*EllipticE(cot(d* 
x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(-3*cos(d*x+c)^3-6*cos(d*x+c)^2-3*co 
s(d*x+c))+A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c 
)+1)/(a+b))^(1/2)*a^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2) 
)*(cos(d*x+c)^3+2*cos(d*x+c)^2+cos(d*x+c))+A*(cos(d*x+c)/(cos(d*x+c)+1))^( 
1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a*b*EllipticF(cot(d*x+c 
)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(-2*cos(d*x+c)^3-4*cos(d*x+c)^2-2*cos(d 
*x+c))+B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1 
)/(a+b))^(1/2)*a^2*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*( 
3*cos(d*x+c)^3+6*cos(d*x+c)^2+3*cos(d*x+c))+(-cos(d*x+c)-1)*sin(d*x+c)*a^2 
*A+sin(d*x+c)*cos(d*x+c)*(1-cos(d*x+c))*A*a*b+2*A*sin(d*x+c)*cos(d*x+c)^2* 
b^2-3*B*a*b*cos(d*x+c)^2*sin(d*x+c)-3*B*sin(d*x+c)*cos(d*x+c)*a^2)*(a+c...
 

Fricas [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(1/2),x, algo 
rithm="fricas")
 

Output:

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))/ 
(b*cos(d*x + c)^4 + a*cos(d*x + c)^3), x)
 

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {A + B \cos {\left (c + d x \right )}}{\sqrt {a + b \cos {\left (c + d x \right )}} \cos ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(5/2)/(a+b*cos(d*x+c))**(1/2),x)
 

Output:

Integral((A + B*cos(c + d*x))/(sqrt(a + b*cos(c + d*x))*cos(c + d*x)**(5/2 
)), x)
 

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(1/2),x, algo 
rithm="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)/(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(5/2 
)), x)
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{\sqrt {b \cos \left (d x + c\right ) + a} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(1/2),x, algo 
rithm="giac")
 

Output:

integrate((B*cos(d*x + c) + A)/(sqrt(b*cos(d*x + c) + a)*cos(d*x + c)^(5/2 
)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {a+b\,\cos \left (c+d\,x\right )}} \,d x \] Input:

int((A + B*cos(c + d*x))/(cos(c + d*x)^(5/2)*(a + b*cos(c + d*x))^(1/2)),x 
)
 

Output:

int((A + B*cos(c + d*x))/(cos(c + d*x)^(5/2)*(a + b*cos(c + d*x))^(1/2)), 
x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}}d x \] Input:

int((A+B*cos(d*x+c))/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(1/2),x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/cos(c + d*x)**3,x)