\(\int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx\) [427]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 416 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx=-\frac {2 (A b-a B) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a b \sqrt {a+b} d}+\frac {2 (A b-a B) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a b \sqrt {a+b} d}-\frac {2 \sqrt {a+b} B \cot (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b^2 d}+\frac {2 a (A b-a B) \sin (c+d x)}{b \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \] Output:

-2*(A*b-B*a)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d 
*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec 
(d*x+c))/(a-b))^(1/2)/a/b/(a+b)^(1/2)/d+2*(A*b-B*a)*cot(d*x+c)*EllipticF(( 
a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*( 
a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/b/(a+b)^(1/ 
2)/d-2*(a+b)^(1/2)*B*cot(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1 
/2)/cos(d*x+c)^(1/2),(a+b)/b,(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b) 
)^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b^2/d+2*a*(A*b-B*a)*sin(d*x+c)/b/(a 
^2-b^2)/d/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 19.02 (sec) , antiderivative size = 1012, normalized size of antiderivative = 2.43 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx =\text {Too large to display} \] Input:

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x])^( 
3/2),x]
 

Output:

(2*Sqrt[Cos[c + d*x]]*(-(A*b*Sin[c + d*x]) + a*B*Sin[c + d*x]))/((a^2 - b^ 
2)*d*Sqrt[a + b*Cos[c + d*x]]) - (-4*a*(a*A - b*B)*((Sqrt[((a + b)*Cot[(c 
+ d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a) 
]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF 
[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a) 
/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[ 
c + d*x]]) - (Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)* 
Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d 
*x)/2]^2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d 
*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4) 
/(b*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])) + 2*(A*b - a*B)*((I*Cos[ 
(c + d*x)/2]*Sqrt[a + b*Cos[c + d*x]]*EllipticE[I*ArcSinh[Sin[(c + d*x)/2] 
/Sqrt[Cos[c + d*x]]], (-2*a)/(-a - b)]*Sec[c + d*x])/(b*Sqrt[Cos[(c + d*x) 
/2]^2*Sec[c + d*x]]*Sqrt[((a + b*Cos[c + d*x])*Sec[c + d*x])/(a + b)]) + ( 
2*a*((a*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c 
+ d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2] 
^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d 
*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[ 
Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - (a*Sqrt[((a + b)*Cot[(c + d*x)/2 
]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqr...
 

Rubi [A] (verified)

Time = 1.49 (sec) , antiderivative size = 420, normalized size of antiderivative = 1.01, number of steps used = 10, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {3042, 3471, 3042, 3273, 3042, 3274, 3042, 3288, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 3471

\(\displaystyle \frac {(A b-a B) \int \frac {\sqrt {\cos (c+d x)}}{(a+b \cos (c+d x))^{3/2}}dx}{b}+\frac {B \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A b-a B) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{b}+\frac {B \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}\)

\(\Big \downarrow \) 3273

\(\displaystyle \frac {(A b-a B) \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\int \frac {\sqrt {a+b \cos (c+d x)}}{\cos ^{\frac {3}{2}}(c+d x)}dx}{a^2-b^2}\right )}{b}+\frac {B \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A b-a B) \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{a^2-b^2}\right )}{b}+\frac {B \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}\)

\(\Big \downarrow \) 3274

\(\displaystyle \frac {(A b-a B) \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-(a-b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}\right )}{b}+\frac {B \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A b-a B) \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}\right )}{b}+\frac {B \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}\)

\(\Big \downarrow \) 3288

\(\displaystyle \frac {(A b-a B) \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-(a-b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}\right )}{b}-\frac {2 B \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {(A b-a B) \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {a \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}\right )}{b}-\frac {2 B \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {(A b-a B) \left (\frac {2 a \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}-\frac {\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}-\frac {2 (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}\right )}{b}-\frac {2 B \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b^2 d}\)

Input:

Int[(Sqrt[Cos[c + d*x]]*(A + B*Cos[c + d*x]))/(a + b*Cos[c + d*x])^(3/2),x 
]
 

Output:

(-2*Sqrt[a + b]*B*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos 
[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a* 
(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(b^2*d) 
 + ((A*b - a*B)*(-(((2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticE[ArcSin[S 
qrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - 
b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - 
 b)])/(a*d) - (2*(a - b)*Sqrt[a + b]*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a 
+ b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*S 
qrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/ 
(a*d))/(a^2 - b^2)) + (2*a*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[Cos[c + d*x]] 
*Sqrt[a + b*Cos[c + d*x]])))/b
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3273
Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_ 
)])^(3/2), x_Symbol] :> Simp[-2*a*d*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b 
*Sin[e + f*x]]*Sqrt[d*Sin[e + f*x]])), x] - Simp[d^2/(a^2 - b^2)   Int[Sqrt 
[a + b*Sin[e + f*x]]/(d*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, d, e, f 
}, x] && NeQ[a^2 - b^2, 0]
 

rule 3274
Int[Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + ( 
f_.)*(x_)])^(3/2), x_Symbol] :> Simp[(c - d)/(a - b)   Int[1/(Sqrt[a + b*Si 
n[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] - Simp[(b*c - a*d)/(a - b) 
Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]] 
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3288
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*b*(Tan[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c 
*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*Ellipti 
cPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + 
 d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - 
 d^2, 0] && PosQ[(c + d)/b]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3471
Int[(((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)]])/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> S 
imp[B/b   Int[Sqrt[c + d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x], x] + S 
imp[(A*b - a*B)/b   Int[Sqrt[c + d*Sin[e + f*x]]/(a + b*Sin[e + f*x])^(3/2) 
, x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[ 
a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1172\) vs. \(2(379)=758\).

Time = 17.02 (sec) , antiderivative size = 1173, normalized size of antiderivative = 2.82

method result size
default \(\text {Expression too large to display}\) \(1173\)
parts \(\text {Expression too large to display}\) \(1198\)

Input:

int(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+cos(d*x+c)*b)^(3/2),x,method=_RET 
URNVERBOSE)
 

Output:

2/d/(a-b)/(a+b)*(a+cos(d*x+c)*b)^(1/2)/(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-cs 
c(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)*(A*cos(d*x+c)^(1/2)*(csc(d*x+c)^2*(1-co 
s(d*x+c))^2+1)*((csc(d*x+c)^3*(1-cos(d*x+c))^3+cot(d*x+c)-csc(d*x+c))*a+(- 
csc(d*x+c)^3*(1-cos(d*x+c))^3-cot(d*x+c)+csc(d*x+c))*b-2*(cos(d*x+c)/(cos( 
d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*EllipticF(c 
ot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a-2*(cos(d*x+c)/(cos(d*x+c)+1)) 
^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*EllipticF(cot(d*x+c)- 
csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b+2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a 
+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c) 
,(-(a-b)/(a+b))^(1/2))*a+2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c 
)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/( 
a+b))^(1/2))*b)/(csc(d*x+c)^2*(1-cos(d*x+c))^2-1)+B*cos(d*x+c)^(3/2)*(csc( 
d*x+c)^2*(1-cos(d*x+c))^2+1)^2*((-csc(d*x+c)^3*(1-cos(d*x+c))^3-cot(d*x+c) 
+csc(d*x+c))*a*b+(csc(d*x+c)^3*(1-cos(d*x+c))^3+cot(d*x+c)-csc(d*x+c))*a^2 
-2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b 
))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b-2*(cos( 
d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2) 
*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2+2*(cos(d*x+c)/( 
cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*Ellipti 
cE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2+2*(cos(d*x+c)/(cos(d...
 

Fricas [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2),x, algo 
rithm="fricas")
 

Output:

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))/ 
(b^2*cos(d*x + c)^2 + 2*a*b*cos(d*x + c) + a^2), x)
 

Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \sqrt {\cos {\left (c + d x \right )}}}{\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(cos(d*x+c)**(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))**(3/2),x)
 

Output:

Integral((A + B*cos(c + d*x))*sqrt(cos(c + d*x))/(a + b*cos(c + d*x))**(3/ 
2), x)
 

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2),x, algo 
rithm="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(b*cos(d*x + c) + a)^(3/ 
2), x)
 

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2),x, algo 
rithm="giac")
 

Output:

integrate((B*cos(d*x + c) + A)*sqrt(cos(d*x + c))/(b*cos(d*x + c) + a)^(3/ 
2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A+B\,\cos \left (c+d\,x\right )\right )}{{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int((cos(c + d*x)^(1/2)*(A + B*cos(c + d*x)))/(a + b*cos(c + d*x))^(3/2),x 
)
 

Output:

int((cos(c + d*x)^(1/2)*(A + B*cos(c + d*x)))/(a + b*cos(c + d*x))^(3/2), 
x)
 

Reduce [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \cos (c+d x))}{(a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right ) b +a}d x \] Input:

int(cos(d*x+c)^(1/2)*(A+B*cos(d*x+c))/(a+b*cos(d*x+c))^(3/2),x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/(cos(c + d*x)*b + a),x)