\(\int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx\) [428]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 284 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx=\frac {2 (A b-a B) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a^2 \sqrt {a+b} d}+\frac {2 (A+B) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a \sqrt {a+b} d}-\frac {2 (A b-a B) \sin (c+d x)}{\left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \] Output:

2*(A*b-B*a)*cot(d*x+c)*EllipticE((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d* 
x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec( 
d*x+c))/(a-b))^(1/2)/a^2/(a+b)^(1/2)/d+2*(A+B)*cot(d*x+c)*EllipticF((a+b*c 
os(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1- 
sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/(a+b)^(1/2)/d-2* 
(A*b-B*a)*sin(d*x+c)/(a^2-b^2)/d/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(1/2)
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 6.94 (sec) , antiderivative size = 1223, normalized size of antiderivative = 4.31 \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx =\text {Too large to display} \] Input:

Integrate[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^(3 
/2)),x]
 

Output:

(-2*Sqrt[Cos[c + d*x]]*(-(A*b^2*Sin[c + d*x]) + a*b*B*Sin[c + d*x]))/(a*(a 
^2 - b^2)*d*Sqrt[a + b*Cos[c + d*x]]) + ((-4*a*(a^2*A - A*b^2)*Sqrt[((a + 
b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x 
)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x] 
*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2 
]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[ 
a + b*Cos[c + d*x]]) - 4*a*(-(a*A*b) + a^2*B)*((Sqrt[((a + b)*Cot[(c + d*x 
)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqr 
t[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcS 
in[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a 
+ b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d 
*x]]) - (Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c 
 + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2 
]^2)/a]*Csc[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])* 
Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*S 
qrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])) + 2*(-(A*b^2) + a*b*B)*((I*Co 
s[(c + d*x)/2]*Sqrt[a + b*Cos[c + d*x]]*EllipticE[I*ArcSinh[Sin[(c + d*x)/ 
2]/Sqrt[Cos[c + d*x]]], (-2*a)/(-a - b)]*Sec[c + d*x])/(b*Sqrt[Cos[(c + d* 
x)/2]^2*Sec[c + d*x]]*Sqrt[((a + b*Cos[c + d*x])*Sec[c + d*x])/(a + b)]) + 
 (2*a*((a*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*C...
 

Rubi [A] (verified)

Time = 1.07 (sec) , antiderivative size = 307, normalized size of antiderivative = 1.08, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {3042, 3472, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 3472

\(\displaystyle \frac {\int \frac {A b-a B+(a A-b B) \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {A b-a B+(a A-b B) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3477

\(\displaystyle \frac {(A b-a B) \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+(a-b) (A+B) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(a-b) (A+B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+(A b-a B) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {(A b-a B) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 (a-b) \sqrt {a+b} (A+B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {\frac {2 (a-b) \sqrt {a+b} (A b-a B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d}+\frac {2 (a-b) \sqrt {a+b} (A+B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a^2-b^2}-\frac {2 (A b-a B) \sin (c+d x)}{d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}\)

Input:

Int[(A + B*Cos[c + d*x])/(Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])^(3/2)),x 
]
 

Output:

((2*(a - b)*Sqrt[a + b]*(A*b - a*B)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + 
 b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sq 
rt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/( 
a^2*d) + (2*(a - b)*Sqrt[a + b]*(A + B)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt 
[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b)) 
]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b) 
])/(a*d))/(a^2 - b^2) - (2*(A*b - a*B)*Sin[c + d*x])/((a^2 - b^2)*d*Sqrt[C 
os[c + d*x]]*Sqrt[a + b*Cos[c + d*x]])
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3472
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_.)*sin[(e_.) + (f_.)*( 
x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)), x_Symbol] :> Simp[2*(A 
*b - a*B)*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[d*Sin[ 
e + f*x]])), x] + Simp[d/(a^2 - b^2)   Int[(A*b - a*B + (a*A - b*B)*Sin[e + 
 f*x])/(Sqrt[a + b*Sin[e + f*x]]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{ 
a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(956\) vs. \(2(258)=516\).

Time = 18.05 (sec) , antiderivative size = 957, normalized size of antiderivative = 3.37

method result size
default \(\text {Expression too large to display}\) \(957\)
parts \(\text {Expression too large to display}\) \(990\)

Input:

int((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+cos(d*x+c)*b)^(3/2),x,method=_RET 
URNVERBOSE)
 

Output:

2/d/(a-b)/(a+b)*(a+cos(d*x+c)*b)^(1/2)/(csc(d*x+c)^2*a*(1-cos(d*x+c))^2-cs 
c(d*x+c)^2*b*(1-cos(d*x+c))^2+a+b)*(A*((csc(d*x+c)^3*(1-cos(d*x+c))^3+cot( 
d*x+c)-csc(d*x+c))*a*b+(-csc(d*x+c)^3*(1-cos(d*x+c))^3-cot(d*x+c)+csc(d*x+ 
c))*b^2-2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+ 
1)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a^2- 
2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b) 
)^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b+2*(cos(d 
*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)* 
EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a*b+2*(cos(d*x+c)/(c 
os(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*Elliptic 
E(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b^2)/a/cos(d*x+c)^(1/2)+B*co 
s(d*x+c)^(1/2)*(csc(d*x+c)^2*(1-cos(d*x+c))^2+1)*((csc(d*x+c)^3*(1-cos(d*x 
+c))^3+cot(d*x+c)-csc(d*x+c))*a+(-csc(d*x+c)^3*(1-cos(d*x+c))^3-cot(d*x+c) 
+csc(d*x+c))*b-2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos( 
d*x+c)+1)/(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2 
))*a-2*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/ 
(a+b))^(1/2)*EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*b+2*(co 
s(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/ 
2)*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*a+2*(cos(d*x+c)/( 
cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*Elli...
 

Fricas [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x, algo 
rithm="fricas")
 

Output:

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))/ 
(b^2*cos(d*x + c)^3 + 2*a*b*cos(d*x + c)^2 + a^2*cos(d*x + c)), x)
                                                                                    
                                                                                    
 

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {A + B \cos {\left (c + d x \right )}}{\left (a + b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}} \sqrt {\cos {\left (c + d x \right )}}}\, dx \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)**(1/2)/(a+b*cos(d*x+c))**(3/2),x)
 

Output:

Integral((A + B*cos(c + d*x))/((a + b*cos(c + d*x))**(3/2)*sqrt(cos(c + d* 
x))), x)
 

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x, algo 
rithm="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^(3/2)*sqrt(cos(d*x + 
c))), x)
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x, algo 
rithm="giac")
 

Output:

integrate((B*cos(d*x + c) + A)/((b*cos(d*x + c) + a)^(3/2)*sqrt(cos(d*x + 
c))), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int((A + B*cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))^(3/2)),x 
)
 

Output:

int((A + B*cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + b*cos(c + d*x))^(3/2)), 
x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2} b +\cos \left (d x +c \right ) a}d x \] Input:

int((A+B*cos(d*x+c))/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2),x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/(cos(c + d*x)**2*b + cos 
(c + d*x)*a),x)