\(\int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx\) [468]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 166 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {4 a^2 (5 A+4 B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{5 d}+\frac {4 a^2 (2 A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 d}+\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{15 d \sqrt {\sec (c+d x)}}+\frac {2 B \left (a^2+a^2 \sec (c+d x)\right ) \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)} \] Output:

4/5*a^2*(5*A+4*B)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*s 
ec(d*x+c)^(1/2)/d+4/3*a^2*(2*A+B)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x 
+1/2*c,2^(1/2))*sec(d*x+c)^(1/2)/d+2/15*a^2*(5*A+7*B)*sin(d*x+c)/d/sec(d*x 
+c)^(1/2)+2/5*B*(a^2+a^2*sec(d*x+c))*sin(d*x+c)/d/sec(d*x+c)^(3/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 3.70 (sec) , antiderivative size = 153, normalized size of antiderivative = 0.92 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\frac {a^2 \sqrt {\sec (c+d x)} \left (20 (2 A+B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-4 i (5 A+4 B) e^{i (c+d x)} \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )+\cos (c+d x) (60 i A+48 i B+10 (A+2 B) \sin (c+d x)+3 B \sin (2 (c+d x)))\right )}{15 d} \] Input:

Integrate[(a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x 
]
 

Output:

(a^2*Sqrt[Sec[c + d*x]]*(20*(2*A + B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d* 
x)/2, 2] - (4*I)*(5*A + 4*B)*E^(I*(c + d*x))*Sqrt[1 + E^((2*I)*(c + d*x))] 
*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))] + Cos[c + d*x]*((6 
0*I)*A + (48*I)*B + 10*(A + 2*B)*Sin[c + d*x] + 3*B*Sin[2*(c + d*x)])))/(1 
5*d)
 

Rubi [A] (verified)

Time = 1.02 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.04, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {3042, 3439, 3042, 4505, 27, 3042, 4484, 25, 3042, 4274, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\sec (c+d x)} (a \cos (c+d x)+a)^2 (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^2 \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3439

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^2 (A \sec (c+d x)+B)}{\sec ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^2 \left (A \csc \left (c+d x+\frac {\pi }{2}\right )+B\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx\)

\(\Big \downarrow \) 4505

\(\displaystyle \frac {2}{5} \int \frac {(\sec (c+d x) a+a) (a (5 A+7 B)+a (5 A+B) \sec (c+d x))}{2 \sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 B \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \int \frac {(\sec (c+d x) a+a) (a (5 A+7 B)+a (5 A+B) \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)}dx+\frac {2 B \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right ) \left (a (5 A+7 B)+a (5 A+B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {2 B \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4484

\(\displaystyle \frac {1}{5} \left (\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}-\frac {2}{3} \int -\frac {3 (5 A+4 B) a^2+5 (2 A+B) \sec (c+d x) a^2}{\sqrt {\sec (c+d x)}}dx\right )+\frac {2 B \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \int \frac {3 (5 A+4 B) a^2+5 (2 A+B) \sec (c+d x) a^2}{\sqrt {\sec (c+d x)}}dx+\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 B \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \int \frac {3 (5 A+4 B) a^2+5 (2 A+B) \csc \left (c+d x+\frac {\pi }{2}\right ) a^2}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 B \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \left (3 a^2 (5 A+4 B) \int \frac {1}{\sqrt {\sec (c+d x)}}dx+5 a^2 (2 A+B) \int \sqrt {\sec (c+d x)}dx\right )+\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 B \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \left (3 a^2 (5 A+4 B) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+5 a^2 (2 A+B) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 B \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \left (5 a^2 (2 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+3 a^2 (5 A+4 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx\right )+\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 B \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \left (5 a^2 (2 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a^2 (5 A+4 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx\right )+\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 B \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \left (5 a^2 (2 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 a^2 (5 A+4 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )+\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {2 B \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{5} \left (\frac {2 a^2 (5 A+7 B) \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2}{3} \left (\frac {10 a^2 (2 A+B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a^2 (5 A+4 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}\right )\right )+\frac {2 B \sin (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{5 d \sec ^{\frac {3}{2}}(c+d x)}\)

Input:

Int[(a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]
 

Output:

(2*B*(a^2 + a^2*Sec[c + d*x])*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + ((2 
*((6*a^2*(5*A + 4*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec 
[c + d*x]])/d + (10*a^2*(2*A + B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2 
, 2]*Sqrt[Sec[c + d*x]])/d))/3 + (2*a^2*(5*A + 7*B)*Sin[c + d*x])/(3*d*Sqr 
t[Sec[c + d*x]]))/5
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3439
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(d + 
c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4484
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*a*Cot[e + 
f*x]*((d*Csc[e + f*x])^n/(f*n)), x] + Simp[1/(d*n)   Int[(d*Csc[e + f*x])^( 
n + 1)*Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x], x] 
/; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && LeQ[n, -1]
 

rule 4505
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot 
[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x] - Sim 
p[b/(a*d*n)   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Sim 
p[a*A*(m - n - 1) - b*B*n - (a*B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] 
/; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0 
] && GtQ[m, 1/2] && LtQ[n, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(356\) vs. \(2(149)=298\).

Time = 10.60 (sec) , antiderivative size = 357, normalized size of antiderivative = 2.15

method result size
default \(-\frac {4 \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, a^{2} \left (-12 B \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\left (10 A +32 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\left (-5 A -13 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+10 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-15 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+5 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{15 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(357\)
parts \(-\frac {2 a^{2} A \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 \left (a^{2} A +2 a^{2} B \right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (4 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{3 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}+\frac {2 \left (2 a^{2} A +a^{2} B \right ) \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}-\frac {2 a^{2} B \sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+8 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(677\)

Input:

int((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x,method=_RETURNV 
ERBOSE)
 

Output:

-4/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(-12*B*c 
os(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+(10*A+32*B)*sin(1/2*d*x+1/2*c)^4*co 
s(1/2*d*x+1/2*c)+(-5*A-13*B)*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)+10*A* 
(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(co 
s(1/2*d*x+1/2*c),2^(1/2))-15*A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x 
+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+5*B*(sin(1/2*d*x+ 
1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2 
*c),2^(1/2))-12*B*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^ 
(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))/(-2*sin(1/2*d*x+1/2*c)^4+sin( 
1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2 
)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.13 \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=-\frac {2 \, {\left (5 i \, \sqrt {2} {\left (2 \, A + B\right )} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 i \, \sqrt {2} {\left (2 \, A + B\right )} a^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} {\left (5 \, A + 4 \, B\right )} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} {\left (5 \, A + 4 \, B\right )} a^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {{\left (3 \, B a^{2} \cos \left (d x + c\right )^{2} + 5 \, {\left (A + 2 \, B\right )} a^{2} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}\right )}}{15 \, d} \] Input:

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorith 
m="fricas")
 

Output:

-2/15*(5*I*sqrt(2)*(2*A + B)*a^2*weierstrassPInverse(-4, 0, cos(d*x + c) + 
 I*sin(d*x + c)) - 5*I*sqrt(2)*(2*A + B)*a^2*weierstrassPInverse(-4, 0, co 
s(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*(5*A + 4*B)*a^2*weierstrassZeta 
(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*I*s 
qrt(2)*(5*A + 4*B)*a^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, c 
os(d*x + c) - I*sin(d*x + c))) - (3*B*a^2*cos(d*x + c)^2 + 5*(A + 2*B)*a^2 
*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/d
 

Sympy [F]

\[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=a^{2} \left (\int A \sqrt {\sec {\left (c + d x \right )}}\, dx + \int 2 A \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int A \cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int B \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int 2 B \cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx + \int B \cos ^{3}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}\, dx\right ) \] Input:

integrate((a+a*cos(d*x+c))**2*(A+B*cos(d*x+c))*sec(d*x+c)**(1/2),x)
 

Output:

a**2*(Integral(A*sqrt(sec(c + d*x)), x) + Integral(2*A*cos(c + d*x)*sqrt(s 
ec(c + d*x)), x) + Integral(A*cos(c + d*x)**2*sqrt(sec(c + d*x)), x) + Int 
egral(B*cos(c + d*x)*sqrt(sec(c + d*x)), x) + Integral(2*B*cos(c + d*x)**2 
*sqrt(sec(c + d*x)), x) + Integral(B*cos(c + d*x)**3*sqrt(sec(c + d*x)), x 
))
 

Maxima [F]

\[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorith 
m="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c)), 
x)
 

Giac [F]

\[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )} \,d x } \] Input:

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algorith 
m="giac")
 

Output:

integrate((B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c)), 
x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int \left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2 \,d x \] Input:

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^2,x)
 

Output:

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^2, x)
 

Reduce [F]

\[ \int (a+a \cos (c+d x))^2 (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=a^{2} \left (\left (\int \sqrt {\sec \left (d x +c \right )}d x \right ) a +2 \left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) a +2 \left (\int \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}d x \right ) b \right ) \] Input:

int((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x)
 

Output:

a**2*(int(sqrt(sec(c + d*x)),x)*a + 2*int(sqrt(sec(c + d*x))*cos(c + d*x), 
x)*a + int(sqrt(sec(c + d*x))*cos(c + d*x),x)*b + int(sqrt(sec(c + d*x))*c 
os(c + d*x)**3,x)*b + int(sqrt(sec(c + d*x))*cos(c + d*x)**2,x)*a + 2*int( 
sqrt(sec(c + d*x))*cos(c + d*x)**2,x)*b)