\(\int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx\) [479]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 125 \[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=-\frac {(A-3 B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(A-B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{a d}+\frac {(A-B) \sqrt {\sec (c+d x)} \sin (c+d x)}{d (a+a \sec (c+d x))} \] Output:

-(A-3*B)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c) 
^(1/2)/a/d+(A-B)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2))*s 
ec(d*x+c)^(1/2)/a/d+(A-B)*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.64 (sec) , antiderivative size = 422, normalized size of antiderivative = 3.38 \[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (2 \sqrt {2} A e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \csc (c) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right )-6 \sqrt {2} B e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \csc (c) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right )+\frac {6 \left ((A-2 B) \cos \left (\frac {1}{2} (c-d x)\right )-B \cos \left (\frac {1}{2} (3 c+d x)\right )\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\sec (c+d x)}}+12 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}-12 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}\right )}{6 a d (1+\cos (c+d x))} \] Input:

Integrate[(A + B*Cos[c + d*x])/((a + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]]),x 
]
 

Output:

(Cos[(c + d*x)/2]^2*((2*Sqrt[2]*A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + 
d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Csc[c]*(-3*Sqrt[1 + E^((2*I)*(c + d* 
x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, - 
E^((2*I)*(c + d*x))]))/E^(I*d*x) - (6*Sqrt[2]*B*Sqrt[E^(I*(c + d*x))/(1 + 
E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Csc[c]*(-3*Sqrt[1 + E^ 
((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/ 
2, 3/4, 7/4, -E^((2*I)*(c + d*x))]))/E^(I*d*x) + (6*((A - 2*B)*Cos[(c - d* 
x)/2] - B*Cos[(3*c + d*x)/2])*Csc[c/2]*Sec[c/2]*Sec[(c + d*x)/2])/Sqrt[Sec 
[c + d*x]] + 12*A*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c 
+ d*x]] - 12*B*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d 
*x]]))/(6*a*d*(1 + Cos[c + d*x]))
 

Rubi [A] (verified)

Time = 0.75 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.04, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3042, 3439, 3042, 4508, 27, 3042, 4274, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{\sqrt {\sec (c+d x)} (a \cos (c+d x)+a)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 3439

\(\displaystyle \int \frac {A \sec (c+d x)+B}{\sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A \csc \left (c+d x+\frac {\pi }{2}\right )+B}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 4508

\(\displaystyle \frac {\int -\frac {a (A-3 B)-a (A-B) \sec (c+d x)}{2 \sqrt {\sec (c+d x)}}dx}{a^2}+\frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {\int \frac {a (A-3 B)-a (A-B) \sec (c+d x)}{\sqrt {\sec (c+d x)}}dx}{2 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {\int \frac {a (A-3 B)-a (A-B) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {a (A-3 B) \int \frac {1}{\sqrt {\sec (c+d x)}}dx-a (A-B) \int \sqrt {\sec (c+d x)}dx}{2 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {a (A-3 B) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx-a (A-B) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {a (A-3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx-a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{2 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {a (A-3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {\frac {2 a (A-3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {(A-B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d (a \sec (c+d x)+a)}-\frac {\frac {2 a (A-3 B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-\frac {2 a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{2 a^2}\)

Input:

Int[(A + B*Cos[c + d*x])/((a + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]]),x]
 

Output:

-1/2*((2*a*(A - 3*B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec 
[c + d*x]])/d - (2*a*(A - B)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]* 
Sqrt[Sec[c + d*x]])/d)/a^2 + ((A - B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d* 
(a + a*Sec[c + d*x]))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3439
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(d + 
c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4508
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b 
- a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(2*m + 
 1))), x] - Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Cs 
c[e + f*x])^n*Simp[b*B*n - a*A*(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B 
, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(243\) vs. \(2(118)=236\).

Time = 4.63 (sec) , antiderivative size = 244, normalized size of antiderivative = 1.95

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-3 B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+\left (2 A -2 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (-A +B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(244\)

Input:

int((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x,method=_RETURNVER 
BOSE)
 

Output:

-((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1/2* 
c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(A*Ellipt 
icF(cos(1/2*d*x+1/2*c),2^(1/2))+A*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-B* 
EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-3*B*EllipticE(cos(1/2*d*x+1/2*c),2^( 
1/2)))+(2*A-2*B)*sin(1/2*d*x+1/2*c)^4+(-A+B)*sin(1/2*d*x+1/2*c)^2)/a/cos(1 
/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2 
*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 237, normalized size of antiderivative = 1.90 \[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {2 \, {\left (A - B\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + {\left (\sqrt {2} {\left (-i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (-i \, A + 3 i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + 3 i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + {\left (\sqrt {2} {\left (i \, A - 3 i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - 3 i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{2 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \] Input:

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm= 
"fricas")
 

Output:

1/2*(2*(A - B)*sqrt(cos(d*x + c))*sin(d*x + c) + (sqrt(2)*(-I*A + I*B)*cos 
(d*x + c) + sqrt(2)*(-I*A + I*B))*weierstrassPInverse(-4, 0, cos(d*x + c) 
+ I*sin(d*x + c)) + (sqrt(2)*(I*A - I*B)*cos(d*x + c) + sqrt(2)*(I*A - I*B 
))*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + (sqrt(2)*(- 
I*A + 3*I*B)*cos(d*x + c) + sqrt(2)*(-I*A + 3*I*B))*weierstrassZeta(-4, 0, 
 weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + (sqrt(2)*(I* 
A - 3*I*B)*cos(d*x + c) + sqrt(2)*(I*A - 3*I*B))*weierstrassZeta(-4, 0, we 
ierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))))/(a*d*cos(d*x + c 
) + a*d)
 

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {\int \frac {A}{\cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + \sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {B \cos {\left (c + d x \right )}}{\cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + \sqrt {\sec {\left (c + d x \right )}}}\, dx}{a} \] Input:

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)**(1/2),x)
 

Output:

(Integral(A/(cos(c + d*x)*sqrt(sec(c + d*x)) + sqrt(sec(c + d*x))), x) + I 
ntegral(B*cos(c + d*x)/(cos(c + d*x)*sqrt(sec(c + d*x)) + sqrt(sec(c + d*x 
))), x))/a
 

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm= 
"maxima")
 

Output:

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sqrt(sec(d*x + c))), 
x)
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x, algorithm= 
"giac")
 

Output:

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sqrt(sec(d*x + c))), 
x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (a+a\,\cos \left (c+d\,x\right )\right )} \,d x \] Input:

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))),x)
 

Output:

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))), x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \, dx=\frac {\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\cos \left (d x +c \right ) \sec \left (d x +c \right )+\sec \left (d x +c \right )}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )}{\cos \left (d x +c \right ) \sec \left (d x +c \right )+\sec \left (d x +c \right )}d x \right ) b}{a} \] Input:

int((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(1/2),x)
 

Output:

(int(sqrt(sec(c + d*x))/(cos(c + d*x)*sec(c + d*x) + sec(c + d*x)),x)*a + 
int((sqrt(sec(c + d*x))*cos(c + d*x))/(cos(c + d*x)*sec(c + d*x) + sec(c + 
 d*x)),x)*b)/a