\(\int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx\) [480]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 163 \[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {3 (A-B) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a d}-\frac {(3 A-5 B) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a d}-\frac {(3 A-5 B) \sin (c+d x)}{3 a d \sqrt {\sec (c+d x)}}+\frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a+a \sec (c+d x))} \] Output:

3*(A-B)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^ 
(1/2)/a/d-1/3*(3*A-5*B)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^( 
1/2))*sec(d*x+c)^(1/2)/a/d-1/3*(3*A-5*B)*sin(d*x+c)/a/d/sec(d*x+c)^(1/2)+( 
A-B)*sin(d*x+c)/d/sec(d*x+c)^(1/2)/(a+a*sec(d*x+c))
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.58 (sec) , antiderivative size = 444, normalized size of antiderivative = 2.72 \[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \left (-6 \sqrt {2} A e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \csc (c) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right )+6 \sqrt {2} B e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \csc (c) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right )-12 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}+20 B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}-\frac {\csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec \left (\frac {1}{2} (c+d x)\right ) \left ((12 A-13 B) \cos \left (\frac {1}{2} (c-d x)\right )+(6 A-5 B) \cos \left (\frac {1}{2} (3 c+d x)\right )-2 B \sin (c) \sin \left (\frac {3}{2} (c+d x)\right )\right )}{\sqrt {\sec (c+d x)}}\right )}{6 a d (1+\cos (c+d x))} \] Input:

Integrate[(A + B*Cos[c + d*x])/((a + a*Cos[c + d*x])*Sec[c + d*x]^(3/2)),x 
]
 

Output:

(Cos[(c + d*x)/2]^2*((-6*Sqrt[2]*A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + 
 d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Csc[c]*(-3*Sqrt[1 + E^((2*I)*(c + d 
*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, 
-E^((2*I)*(c + d*x))]))/E^(I*d*x) + (6*Sqrt[2]*B*Sqrt[E^(I*(c + d*x))/(1 + 
 E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Csc[c]*(-3*Sqrt[1 + E 
^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1 
/2, 3/4, 7/4, -E^((2*I)*(c + d*x))]))/E^(I*d*x) - 12*A*Sqrt[Cos[c + d*x]]* 
EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]] + 20*B*Sqrt[Cos[c + d*x]]*Ell 
ipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]] - (Csc[c/2]*Sec[c/2]*Sec[(c + d* 
x)/2]*((12*A - 13*B)*Cos[(c - d*x)/2] + (6*A - 5*B)*Cos[(3*c + d*x)/2] - 2 
*B*Sin[c]*Sin[(3*(c + d*x))/2]))/Sqrt[Sec[c + d*x]]))/(6*a*d*(1 + Cos[c + 
d*x]))
 

Rubi [A] (verified)

Time = 0.93 (sec) , antiderivative size = 159, normalized size of antiderivative = 0.98, number of steps used = 14, number of rules used = 14, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.424, Rules used = {3042, 3439, 3042, 4508, 27, 3042, 4274, 3042, 4256, 3042, 4258, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \cos (c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 3439

\(\displaystyle \int \frac {A \sec (c+d x)+B}{\sec ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A \csc \left (c+d x+\frac {\pi }{2}\right )+B}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )}dx\)

\(\Big \downarrow \) 4508

\(\displaystyle \frac {\int -\frac {a (3 A-5 B)-3 a (A-B) \sec (c+d x)}{2 \sec ^{\frac {3}{2}}(c+d x)}dx}{a^2}+\frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}-\frac {\int \frac {a (3 A-5 B)-3 a (A-B) \sec (c+d x)}{\sec ^{\frac {3}{2}}(c+d x)}dx}{2 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}-\frac {\int \frac {a (3 A-5 B)-3 a (A-B) \csc \left (c+d x+\frac {\pi }{2}\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx}{2 a^2}\)

\(\Big \downarrow \) 4274

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}-\frac {a (3 A-5 B) \int \frac {1}{\sec ^{\frac {3}{2}}(c+d x)}dx-3 a (A-B) \int \frac {1}{\sqrt {\sec (c+d x)}}dx}{2 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}-\frac {a (3 A-5 B) \int \frac {1}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx-3 a (A-B) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}\)

\(\Big \downarrow \) 4256

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}-\frac {a (3 A-5 B) \left (\frac {1}{3} \int \sqrt {\sec (c+d x)}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-3 a (A-B) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}-\frac {a (3 A-5 B) \left (\frac {1}{3} \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-3 a (A-B) \int \frac {1}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 a^2}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}-\frac {a (3 A-5 B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-3 a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)}dx}{2 a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}-\frac {a (3 A-5 B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-3 a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{2 a^2}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}-\frac {a (3 A-5 B) \left (\frac {1}{3} \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}\right )-\frac {6 a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {(A-B) \sin (c+d x)}{d \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)}-\frac {a (3 A-5 B) \left (\frac {2 \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}}+\frac {2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}\right )-\frac {6 a (A-B) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{2 a^2}\)

Input:

Int[(A + B*Cos[c + d*x])/((a + a*Cos[c + d*x])*Sec[c + d*x]^(3/2)),x]
 

Output:

((A - B)*Sin[c + d*x])/(d*Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])) - ((-6* 
a*(A - B)*Sqrt[Cos[c + d*x]]*EllipticE[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]]) 
/d + a*(3*A - 5*B)*((2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[S 
ec[c + d*x]])/(3*d) + (2*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])))/(2*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3439
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[g^(m + n)   Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*(d + 
c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c 
- a*d, 0] &&  !IntegerQ[p] && IntegerQ[m] && IntegerQ[n]
 

rule 4256
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*(( 
b*Csc[c + d*x])^(n + 1)/(b*d*n)), x] + Simp[(n + 1)/(b^2*n)   Int[(b*Csc[c 
+ d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && IntegerQ[2* 
n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4274
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_)), x_Symbol] :> Simp[a   Int[(d*Csc[e + f*x])^n, x], x] + Simp[b/d   In 
t[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
 

rule 4508
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b 
- a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(2*m + 
 1))), x] - Simp[1/(a^2*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Cs 
c[e + f*x])^n*Simp[b*B*n - a*A*(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B 
, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0]
 
Maple [A] (verified)

Time = 5.70 (sec) , antiderivative size = 262, normalized size of antiderivative = 1.61

method result size
default \(\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \left (3 A \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+9 A \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-5 B \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-9 B \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )+8 B \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\left (6 A -18 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (-3 A +7 B \right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )}{3 a \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(262\)

Input:

int((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(3/2),x,method=_RETURNVER 
BOSE)
 

Output:

1/3*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(cos(1/2*d*x+1 
/2*c)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(3*A*E 
llipticF(cos(1/2*d*x+1/2*c),2^(1/2))+9*A*EllipticE(cos(1/2*d*x+1/2*c),2^(1 
/2))-5*B*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-9*B*EllipticE(cos(1/2*d*x+1 
/2*c),2^(1/2)))+8*B*sin(1/2*d*x+1/2*c)^6+(6*A-18*B)*sin(1/2*d*x+1/2*c)^4+( 
-3*A+7*B)*sin(1/2*d*x+1/2*c)^2)/a/cos(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c 
)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2 
-1)^(1/2)/d
                                                                                    
                                                                                    
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.16 (sec) , antiderivative size = 261, normalized size of antiderivative = 1.60 \[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {{\left (\sqrt {2} {\left (3 i \, A - 5 i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (3 i \, A - 5 i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (-3 i \, A + 5 i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-3 i \, A + 5 i \, B\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 9 \, {\left (\sqrt {2} {\left (-i \, A + i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 9 \, {\left (\sqrt {2} {\left (i \, A - i \, B\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - i \, B\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (2 \, B \cos \left (d x + c\right )^{2} - {\left (3 \, A - 5 \, B\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}} \] Input:

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(3/2),x, algorithm= 
"fricas")
 

Output:

1/6*((sqrt(2)*(3*I*A - 5*I*B)*cos(d*x + c) + sqrt(2)*(3*I*A - 5*I*B))*weie 
rstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c)) + (sqrt(2)*(-3*I*A + 
 5*I*B)*cos(d*x + c) + sqrt(2)*(-3*I*A + 5*I*B))*weierstrassPInverse(-4, 0 
, cos(d*x + c) - I*sin(d*x + c)) - 9*(sqrt(2)*(-I*A + I*B)*cos(d*x + c) + 
sqrt(2)*(-I*A + I*B))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, co 
s(d*x + c) + I*sin(d*x + c))) - 9*(sqrt(2)*(I*A - I*B)*cos(d*x + c) + sqrt 
(2)*(I*A - I*B))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x 
 + c) - I*sin(d*x + c))) + 2*(2*B*cos(d*x + c)^2 - (3*A - 5*B)*cos(d*x + c 
))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c) + a*d)
 

Sympy [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\int \frac {A}{\cos {\left (c + d x \right )} \sec ^{\frac {3}{2}}{\left (c + d x \right )} + \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx + \int \frac {B \cos {\left (c + d x \right )}}{\cos {\left (c + d x \right )} \sec ^{\frac {3}{2}}{\left (c + d x \right )} + \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx}{a} \] Input:

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)**(3/2),x)
 

Output:

(Integral(A/(cos(c + d*x)*sec(c + d*x)**(3/2) + sec(c + d*x)**(3/2)), x) + 
 Integral(B*cos(c + d*x)/(cos(c + d*x)*sec(c + d*x)**(3/2) + sec(c + d*x)* 
*(3/2)), x))/a
 

Maxima [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(3/2),x, algorithm= 
"maxima")
 

Output:

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sec(d*x + c)^(3/2)), 
x)
 

Giac [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {B \cos \left (d x + c\right ) + A}{{\left (a \cos \left (d x + c\right ) + a\right )} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(3/2),x, algorithm= 
"giac")
 

Output:

integrate((B*cos(d*x + c) + A)/((a*cos(d*x + c) + a)*sec(d*x + c)^(3/2)), 
x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {A+B\,\cos \left (c+d\,x\right )}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\left (a+a\,\cos \left (c+d\,x\right )\right )} \,d x \] Input:

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(3/2)*(a + a*cos(c + d*x))),x)
 

Output:

int((A + B*cos(c + d*x))/((1/cos(c + d*x))^(3/2)*(a + a*cos(c + d*x))), x)
 

Reduce [F]

\[ \int \frac {A+B \cos (c+d x)}{(a+a \cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}+\sec \left (d x +c \right )^{2}}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )}{\cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}+\sec \left (d x +c \right )^{2}}d x \right ) b}{a} \] Input:

int((A+B*cos(d*x+c))/(a+a*cos(d*x+c))/sec(d*x+c)^(3/2),x)
 

Output:

(int(sqrt(sec(c + d*x))/(cos(c + d*x)*sec(c + d*x)**2 + sec(c + d*x)**2),x 
)*a + int((sqrt(sec(c + d*x))*cos(c + d*x))/(cos(c + d*x)*sec(c + d*x)**2 
+ sec(c + d*x)**2),x)*b)/a