\(\int \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx\) [594]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 445 \[ \int \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=-\frac {(a-b) \sqrt {a+b} B \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{a d \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b} (2 A+B) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{d \sqrt {\sec (c+d x)}}-\frac {\sqrt {a+b} (2 A b+a B) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{b d \sqrt {\sec (c+d x)}}+\frac {B \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{d} \] Output:

-(a-b)*(a+b)^(1/2)*B*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticE((a+b*cos(d*x+c) 
)^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c 
))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/d/sec(d*x+c)^(1/2)+(a+b)^ 
(1/2)*(2*A+B)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2) 
/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b 
))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/d/sec(d*x+c)^(1/2)-(a+b)^(1/2)*(2* 
A*b+B*a)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+ 
b)^(1/2)/cos(d*x+c)^(1/2),(a+b)/b,(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/ 
(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b/d/sec(d*x+c)^(1/2)+B*(a+b*co 
s(d*x+c))^(1/2)*sec(d*x+c)^(1/2)*sin(d*x+c)/d
 

Mathematica [A] (verified)

Time = 20.17 (sec) , antiderivative size = 787, normalized size of antiderivative = 1.77 \[ \int \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx =\text {Too large to display} \] Input:

Integrate[Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]] 
,x]
 

Output:

(-(a*B*Tan[(c + d*x)/2]) - b*B*Tan[(c + d*x)/2] + 2*b*B*Tan[(c + d*x)/2]^3 
 + a*B*Tan[(c + d*x)/2]^5 - b*B*Tan[(c + d*x)/2]^5 - 4*A*b*EllipticPi[-1, 
ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*S 
qrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - 2*a*B 
*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[( 
c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/ 
(a + b)] - 4*A*b*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b) 
]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + 
 d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] - 2*a*B*EllipticPi[-1, ArcSin[ 
Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + 
d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + 
 b)] - (a + b)*B*EllipticE[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqr 
t[1 - Tan[(c + d*x)/2]^2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c 
+ d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + 2*(A*b + a*(-A + B))*Ellipt 
icF[ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^ 
2]*(1 + Tan[(c + d*x)/2]^2)*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c 
+ d*x)/2]^2)/(a + b)])/(d*Sqrt[(1 + Tan[(c + d*x)/2]^2)/(1 - Tan[(c + d*x) 
/2]^2)]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(1 + Ta 
n[(c + d*x)/2]^2)]*(-1 + Tan[(c + d*x)/2]^4))
 

Rubi [A] (verified)

Time = 1.78 (sec) , antiderivative size = 412, normalized size of antiderivative = 0.93, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.371, Rules used = {3042, 3440, 3042, 3482, 25, 3042, 3532, 3042, 3288, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {\sec (c+d x)} \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x)) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3440

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\cos (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3482

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \int -\frac {-\left ((2 A b+a B) \cos ^2(c+d x)\right )-2 a A \cos (c+d x)+a B}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx+\frac {B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {1}{2} \int \frac {-\left ((2 A b+a B) \cos ^2(c+d x)\right )-2 a A \cos (c+d x)+a B}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}-\frac {1}{2} \int \frac {(-2 A b-a B) \sin \left (c+d x+\frac {\pi }{2}\right )^2-2 a A \sin \left (c+d x+\frac {\pi }{2}\right )+a B}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\)

\(\Big \downarrow \) 3532

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left ((a B+2 A b) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx-\int \frac {a B-2 a A \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx\right )+\frac {B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left ((a B+2 A b) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\int \frac {a B-2 a A \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (-\int \frac {a B-2 a A \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} (a B+2 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d}\right )+\frac {B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3477

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (a (2 A+B) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx-a B \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-\frac {2 \sqrt {a+b} (a B+2 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d}\right )+\frac {B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (a (2 A+B) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-a B \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {2 \sqrt {a+b} (a B+2 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d}\right )+\frac {B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (-a B \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sqrt {a+b} (2 A+B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}-\frac {2 \sqrt {a+b} (a B+2 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d}\right )+\frac {B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

\(\Big \downarrow \) 3473

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{2} \left (\frac {2 \sqrt {a+b} (2 A+B) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}-\frac {2 \sqrt {a+b} (a B+2 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d}-\frac {2 B (a-b) \sqrt {a+b} \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}\right )+\frac {B \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{d \sqrt {\cos (c+d x)}}\right )\)

Input:

Int[Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x])*Sqrt[Sec[c + d*x]],x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(((-2*(a - b)*Sqrt[a + b]*B*Cot[c + 
d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d 
*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*( 
1 + Sec[c + d*x]))/(a - b)])/(a*d) + (2*Sqrt[a + b]*(2*A + B)*Cot[c + d*x] 
*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]] 
)], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + 
Sec[c + d*x]))/(a - b)])/d - (2*Sqrt[a + b]*(2*A*b + a*B)*Cot[c + d*x]*Ell 
ipticPi[(a + b)/b, ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c 
 + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[ 
(a*(1 + Sec[c + d*x]))/(a - b)])/(b*d))/2 + (B*Sqrt[a + b*Cos[c + d*x]]*Si 
n[c + d*x])/(d*Sqrt[Cos[c + d*x]]))
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3288
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*b*(Tan[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c 
*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*Ellipti 
cPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + 
 d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - 
 d^2, 0] && PosQ[(c + d)/b]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3440
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p   Int[(a + b*Sin[e + f*x])^m*((c + 
d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g 
, m, n, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && I 
ntegerQ[n])
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3482
Int[Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[-2*B*Cos[e + f*x]*Sqrt[a + b*Sin[e + f*x]]*((c + d*Sin[e + f*x])^n/(f*(2* 
n + 3))), x] + Simp[1/(2*n + 3)   Int[((c + d*Sin[e + f*x])^(n - 1)/Sqrt[a 
+ b*Sin[e + f*x]])*Simp[a*A*c*(2*n + 3) + B*(b*c + 2*a*d*n) + (B*(a*c + b*d 
)*(2*n + 1) + A*(b*c + a*d)*(2*n + 3))*Sin[e + f*x] + (A*b*d*(2*n + 3) + B* 
(a*d + 2*b*c*n))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, 
B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Eq 
Q[n^2, 1/4]
 

rule 3532
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[C/b^2   Int[Sqrt[a + b*Sin[e + f*x]] 
/Sqrt[c + d*Sin[e + f*x]], x], x] + Simp[1/b^2   Int[(A*b^2 - a^2*C + b*(b* 
B - 2*a*C)*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x 
]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] & 
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
Maple [A] (verified)

Time = 21.93 (sec) , antiderivative size = 666, normalized size of antiderivative = 1.50

method result size
parts \(-\frac {2 A \sqrt {\sec \left (d x +c \right )}\, \left (\operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) a -\operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right ) b +2 b \operatorname {EllipticPi}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right )\right ) \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \left (\cos \left (d x +c \right )+1\right )}{d \sqrt {a +\cos \left (d x +c \right ) b}}+\frac {B \left (\left (-2 \cos \left (d x +c \right )^{2}-4 \cos \left (d x +c \right )-2\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, a \operatorname {EllipticPi}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right )+\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, a \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, b \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (2+2 \cos \left (d x +c \right )^{2}+4 \cos \left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, a \operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\sin \left (d x +c \right ) \cos \left (d x +c \right )^{2} b +\cos \left (d x +c \right ) \sin \left (d x +c \right ) a \right ) \sqrt {a +\cos \left (d x +c \right ) b}\, \sqrt {\sec \left (d x +c \right )}}{d \left (b \cos \left (d x +c \right )^{2}+a \cos \left (d x +c \right )+\cos \left (d x +c \right ) b +a \right )}\) \(666\)
default \(-\frac {\left (\left (4 \cos \left (d x +c \right )^{2}+8 \cos \left (d x +c \right )+4\right ) A \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, b \operatorname {EllipticPi}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right )+\left (2+2 \cos \left (d x +c \right )^{2}+4 \cos \left (d x +c \right )\right ) B \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, a \operatorname {EllipticPi}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), -1, \sqrt {-\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) B \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, a \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) B \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, b \operatorname {EllipticE}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (2+2 \cos \left (d x +c \right )^{2}+4 \cos \left (d x +c \right )\right ) A \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, a \operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (-2 \cos \left (d x +c \right )^{2}-4 \cos \left (d x +c \right )-2\right ) A \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, b \operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )+\left (-2 \cos \left (d x +c \right )^{2}-4 \cos \left (d x +c \right )-2\right ) B \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {a +\cos \left (d x +c \right ) b}{\left (\cos \left (d x +c \right )+1\right ) \left (a +b \right )}}\, a \operatorname {EllipticF}\left (\cot \left (d x +c \right )-\csc \left (d x +c \right ), \sqrt {-\frac {a -b}{a +b}}\right )-B b \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )-B a \cos \left (d x +c \right ) \sin \left (d x +c \right )\right ) \sqrt {a +\cos \left (d x +c \right ) b}\, \sqrt {\sec \left (d x +c \right )}}{d \left (b \cos \left (d x +c \right )^{2}+a \cos \left (d x +c \right )+\cos \left (d x +c \right ) b +a \right )}\) \(789\)

Input:

int((a+cos(d*x+c)*b)^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x,method=_RET 
URNVERBOSE)
 

Output:

-2*A/d*sec(d*x+c)^(1/2)/(a+cos(d*x+c)*b)^(1/2)*(EllipticF(cot(d*x+c)-csc(d 
*x+c),(-(a-b)/(a+b))^(1/2))*a-EllipticF(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b 
))^(1/2))*b+2*b*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))) 
*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1)) 
^(1/2)*(cos(d*x+c)+1)+B/d*((-2*cos(d*x+c)^2-4*cos(d*x+c)-2)*(cos(d*x+c)/(c 
os(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a*Ellipt 
icPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))+(-cos(d*x+c)^2-2*cos(d 
*x+c)-1)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1 
)/(a+b))^(1/2)*a*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+(-c 
os(d*x+c)^2-2*cos(d*x+c)-1)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+ 
c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*b*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b 
)/(a+b))^(1/2))+(2+2*cos(d*x+c)^2+4*cos(d*x+c))*(cos(d*x+c)/(cos(d*x+c)+1) 
)^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a*EllipticF(cot(d*x+ 
c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))+sin(d*x+c)*cos(d*x+c)^2*b+cos(d*x+c)*s 
in(d*x+c)*a)*(a+cos(d*x+c)*b)^(1/2)*sec(d*x+c)^(1/2)/(b*cos(d*x+c)^2+a*cos 
(d*x+c)+cos(d*x+c)*b+a)
 

Fricas [F]

\[ \int \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algo 
rithm="fricas")
 

Output:

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c)), 
 x)
 

Sympy [F]

\[ \int \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int \left (A + B \cos {\left (c + d x \right )}\right ) \sqrt {a + b \cos {\left (c + d x \right )}} \sqrt {\sec {\left (c + d x \right )}}\, dx \] Input:

integrate((a+b*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)**(1/2),x)
 

Output:

Integral((A + B*cos(c + d*x))*sqrt(a + b*cos(c + d*x))*sqrt(sec(c + d*x)), 
 x)
 

Maxima [F]

\[ \int \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algo 
rithm="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c)) 
, x)
 

Giac [F]

\[ \int \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int { {\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a} \sqrt {\sec \left (d x + c\right )} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x, algo 
rithm="giac")
 

Output:

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)*sqrt(sec(d*x + c)) 
, x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\int \left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\sqrt {a+b\,\cos \left (c+d\,x\right )} \,d x \] Input:

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(1/2) 
,x)
 

Output:

int((A + B*cos(c + d*x))*(1/cos(c + d*x))^(1/2)*(a + b*cos(c + d*x))^(1/2) 
, x)
 

Reduce [F]

\[ \int \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x)) \sqrt {\sec (c+d x)} \, dx=\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}d x \right ) a \] Input:

int((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))*sec(d*x+c)^(1/2),x)
 

Output:

int(sqrt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a)*cos(c + d*x),x)*b + int(sq 
rt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a),x)*a