\(\int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx\) [595]

Optimal result
Mathematica [B] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 533 \[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=-\frac {(a-b) \sqrt {a+b} (4 A b+a B) \sqrt {\cos (c+d x)} \csc (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 a b d \sqrt {\sec (c+d x)}}+\frac {\sqrt {a+b} (4 A b+(a+2 b) B) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b d \sqrt {\sec (c+d x)}}-\frac {\sqrt {a+b} \left (4 a A b-a^2 B+4 b^2 B\right ) \sqrt {\cos (c+d x)} \csc (c+d x) \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{4 b^2 d \sqrt {\sec (c+d x)}}+\frac {B \sqrt {a+b \cos (c+d x)} \sin (c+d x)}{2 d \sqrt {\sec (c+d x)}}+\frac {(4 A b+a B) \sqrt {a+b \cos (c+d x)} \sqrt {\sec (c+d x)} \sin (c+d x)}{4 b d} \] Output:

-1/4*(a-b)*(a+b)^(1/2)*(4*A*b+B*a)*cos(d*x+c)^(1/2)*csc(d*x+c)*EllipticE(( 
a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2))*( 
a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a/b/d/sec(d*x 
+c)^(1/2)+1/4*(a+b)^(1/2)*(4*A*b+(a+2*b)*B)*cos(d*x+c)^(1/2)*csc(d*x+c)*El 
lipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b)) 
^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/b/d/ 
sec(d*x+c)^(1/2)-1/4*(a+b)^(1/2)*(4*A*a*b-B*a^2+4*B*b^2)*cos(d*x+c)^(1/2)* 
csc(d*x+c)*EllipticPi((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2), 
(a+b)/b,(-(a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x 
+c))/(a-b))^(1/2)/b^2/d/sec(d*x+c)^(1/2)+1/2*B*(a+b*cos(d*x+c))^(1/2)*sin( 
d*x+c)/d/sec(d*x+c)^(1/2)+1/4*(4*A*b+B*a)*(a+b*cos(d*x+c))^(1/2)*sec(d*x+c 
)^(1/2)*sin(d*x+c)/b/d
 

Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(1121\) vs. \(2(533)=1066\).

Time = 20.04 (sec) , antiderivative size = 1121, normalized size of antiderivative = 2.10 \[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx =\text {Too large to display} \] Input:

Integrate[(Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Sqrt[Sec[c + d*x 
]],x]
 

Output:

(B*Sqrt[a + b*Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*Sin[2*(c + d*x)])/(4*d) + ( 
Sqrt[(1 - Tan[(c + d*x)/2]^2)^(-1)]*(4*a*A*b*Tan[(c + d*x)/2] + 4*A*b^2*Ta 
n[(c + d*x)/2] + a^2*B*Tan[(c + d*x)/2] + a*b*B*Tan[(c + d*x)/2] - 8*A*b^2 
*Tan[(c + d*x)/2]^3 - 2*a*b*B*Tan[(c + d*x)/2]^3 - 4*a*A*b*Tan[(c + d*x)/2 
]^5 + 4*A*b^2*Tan[(c + d*x)/2]^5 - a^2*B*Tan[(c + d*x)/2]^5 + a*b*B*Tan[(c 
 + d*x)/2]^5 + 8*a*A*b*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/( 
a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - 
b*Tan[(c + d*x)/2]^2)/(a + b)] - 2*a^2*B*EllipticPi[-1, ArcSin[Tan[(c + d* 
x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan 
[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + 8*b^2*B*EllipticPi[-1, 
ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[1 - Tan[(c + d*x)/2]^2]*S 
qrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + 8*a*A 
*b*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Tan[(c + d*x 
)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b 
*Tan[(c + d*x)/2]^2)/(a + b)] - 2*a^2*B*EllipticPi[-1, ArcSin[Tan[(c + d*x 
)/2]], (-a + b)/(a + b)]*Tan[(c + d*x)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*S 
qrt[(a + b + a*Tan[(c + d*x)/2]^2 - b*Tan[(c + d*x)/2]^2)/(a + b)] + 8*b^2 
*B*EllipticPi[-1, ArcSin[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Tan[(c + d*x 
)/2]^2*Sqrt[1 - Tan[(c + d*x)/2]^2]*Sqrt[(a + b + a*Tan[(c + d*x)/2]^2 - b 
*Tan[(c + d*x)/2]^2)/(a + b)] + (a + b)*(4*A*b + a*B)*EllipticE[ArcSin[...
 

Rubi [A] (verified)

Time = 2.21 (sec) , antiderivative size = 492, normalized size of antiderivative = 0.92, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 3440, 3042, 3482, 3042, 3540, 25, 3042, 3532, 3042, 3288, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3440

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx\)

\(\Big \downarrow \) 3482

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{4} \int \frac {(4 A b+a B) \cos ^2(c+d x)+2 (2 a A+b B) \cos (c+d x)+a B}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{4} \int \frac {(4 A b+a B) \sin \left (c+d x+\frac {\pi }{2}\right )^2+2 (2 a A+b B) \sin \left (c+d x+\frac {\pi }{2}\right )+a B}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 3540

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{4} \left (\frac {\int -\frac {-\left (\left (-B a^2+4 A b a+4 b^2 B\right ) \cos ^2(c+d x)\right )-2 a b B \cos (c+d x)+a (4 A b+a B)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{2 b}+\frac {(a B+4 A b) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{4} \left (\frac {(a B+4 A b) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}-\frac {\int \frac {-\left (\left (-B a^2+4 A b a+4 b^2 B\right ) \cos ^2(c+d x)\right )-2 a b B \cos (c+d x)+a (4 A b+a B)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{2 b}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{4} \left (\frac {(a B+4 A b) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}-\frac {\int \frac {\left (B a^2-4 A b a-4 b^2 B\right ) \sin \left (c+d x+\frac {\pi }{2}\right )^2-2 a b B \sin \left (c+d x+\frac {\pi }{2}\right )+a (4 A b+a B)}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 b}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 3532

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{4} \left (\frac {(a B+4 A b) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}-\frac {\int \frac {a (4 A b+a B)-2 a b B \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-\left (a^2 (-B)+4 a A b+4 b^2 B\right ) \int \frac {\sqrt {\cos (c+d x)}}{\sqrt {a+b \cos (c+d x)}}dx}{2 b}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{4} \left (\frac {(a B+4 A b) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}-\frac {\int \frac {a (4 A b+a B)-2 a b B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx-\left (a^2 (-B)+4 a A b+4 b^2 B\right ) \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{2 b}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 3288

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{4} \left (\frac {(a B+4 A b) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}-\frac {\int \frac {a (4 A b+a B)-2 a b B \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sqrt {a+b} \left (a^2 (-B)+4 a A b+4 b^2 B\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d}}{2 b}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 3477

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{4} \left (\frac {(a B+4 A b) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}-\frac {a (a B+4 A b) \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx-a (B (a+2 b)+4 A b) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx+\frac {2 \sqrt {a+b} \left (a^2 (-B)+4 a A b+4 b^2 B\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d}}{2 b}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{4} \left (\frac {(a B+4 A b) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}-\frac {-a (B (a+2 b)+4 A b) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+a (a B+4 A b) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sqrt {a+b} \left (a^2 (-B)+4 a A b+4 b^2 B\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d}}{2 b}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 3295

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{4} \left (\frac {(a B+4 A b) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}-\frac {a (a B+4 A b) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sqrt {a+b} \left (a^2 (-B)+4 a A b+4 b^2 B\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d}-\frac {2 \sqrt {a+b} (B (a+2 b)+4 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}}{2 b}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\right )\)

\(\Big \downarrow \) 3473

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {1}{4} \left (\frac {(a B+4 A b) \sin (c+d x) \sqrt {a+b \cos (c+d x)}}{b d \sqrt {\cos (c+d x)}}-\frac {\frac {2 \sqrt {a+b} \left (a^2 (-B)+4 a A b+4 b^2 B\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticPi}\left (\frac {a+b}{b},\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{b d}-\frac {2 \sqrt {a+b} (B (a+2 b)+4 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{d}+\frac {2 (a-b) \sqrt {a+b} (a B+4 A b) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a d}}{2 b}\right )+\frac {B \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}{2 d}\right )\)

Input:

Int[(Sqrt[a + b*Cos[c + d*x]]*(A + B*Cos[c + d*x]))/Sqrt[Sec[c + d*x]],x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((B*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Co 
s[c + d*x]]*Sin[c + d*x])/(2*d) + (-1/2*((2*(a - b)*Sqrt[a + b]*(4*A*b + a 
*B)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a + b]*Sq 
rt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]))/(a + b 
)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d) - (2*Sqrt[a + b]*(4*A*b + ( 
a + 2*b)*B)*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d*x]]/(Sqrt[a 
 + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Sec[c + d*x]) 
)/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/d + (2*Sqrt[a + b]*(4*a*A 
*b - a^2*B + 4*b^2*B)*Cot[c + d*x]*EllipticPi[(a + b)/b, ArcSin[Sqrt[a + b 
*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt 
[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(b* 
d))/b + ((4*A*b + a*B)*Sqrt[a + b*Cos[c + d*x]]*Sin[c + d*x])/(b*d*Sqrt[Co 
s[c + d*x]]))/4)
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3288
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[2*b*(Tan[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c 
*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*Ellipti 
cPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + 
 d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - 
 d^2, 0] && PosQ[(c + d)/b]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3440
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)* 
(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim 
p[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p   Int[(a + b*Sin[e + f*x])^m*((c + 
d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g 
, m, n, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && I 
ntegerQ[n])
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3482
Int[Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[-2*B*Cos[e + f*x]*Sqrt[a + b*Sin[e + f*x]]*((c + d*Sin[e + f*x])^n/(f*(2* 
n + 3))), x] + Simp[1/(2*n + 3)   Int[((c + d*Sin[e + f*x])^(n - 1)/Sqrt[a 
+ b*Sin[e + f*x]])*Simp[a*A*c*(2*n + 3) + B*(b*c + 2*a*d*n) + (B*(a*c + b*d 
)*(2*n + 1) + A*(b*c + a*d)*(2*n + 3))*Sin[e + f*x] + (A*b*d*(2*n + 3) + B* 
(a*d + 2*b*c*n))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, 
B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Eq 
Q[n^2, 1/4]
 

rule 3532
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[C/b^2   Int[Sqrt[a + b*Sin[e + f*x]] 
/Sqrt[c + d*Sin[e + f*x]], x], x] + Simp[1/b^2   Int[(A*b^2 - a^2*C + b*(b* 
B - 2*a*C)*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x 
]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] & 
& NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3540
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(Sqrt[c + d*Sin[e + f 
*x]]/(d*f*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[1/(2*d)   Int[(1/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]))*Simp[2*a*A*d - C*(b*c - a*d) - 
 2*(a*c*C - d*(A*b + a*B))*Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d))*Sin[e + 
 f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a 
*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1144\) vs. \(2(470)=940\).

Time = 20.66 (sec) , antiderivative size = 1145, normalized size of antiderivative = 2.15

method result size
default \(\text {Expression too large to display}\) \(1145\)
parts \(\text {Expression too large to display}\) \(1178\)

Input:

int((a+cos(d*x+c)*b)^(1/2)*(A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x,method=_RET 
URNVERBOSE)
 

Output:

1/4/d*(a+cos(d*x+c)*b)^(1/2)/(b*cos(d*x+c)^2+a*cos(d*x+c)+cos(d*x+c)*b+a)/ 
sec(d*x+c)^(1/2)*(A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(c 
os(d*x+c)+1)/(a+b))^(1/2)*a*b*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/ 
(a+b))^(1/2))*(-8*cos(d*x+c)-16-8*sec(d*x+c))+B*(cos(d*x+c)/(cos(d*x+c)+1) 
)^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a^2*EllipticPi(cot(d 
*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*(2*cos(d*x+c)+4+2*sec(d*x+c))+B* 
(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^ 
(1/2)*b^2*EllipticPi(cot(d*x+c)-csc(d*x+c),-1,(-(a-b)/(a+b))^(1/2))*(-8*co 
s(d*x+c)-16-8*sec(d*x+c))+A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+ 
c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a*b*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a 
-b)/(a+b))^(1/2))*(-4*cos(d*x+c)-8-4*sec(d*x+c))+A*(cos(d*x+c)/(cos(d*x+c) 
+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*b^2*EllipticE(cot 
(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(-4*cos(d*x+c)-8-4*sec(d*x+c))+B* 
(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^ 
(1/2)*a^2*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b))^(1/2))*(-cos(d*x+ 
c)-2-sec(d*x+c))+B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*((a+cos(d*x+c)*b)/(co 
s(d*x+c)+1)/(a+b))^(1/2)*a*b*EllipticE(cot(d*x+c)-csc(d*x+c),(-(a-b)/(a+b) 
)^(1/2))*(-cos(d*x+c)-2-sec(d*x+c))+A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(( 
a+cos(d*x+c)*b)/(cos(d*x+c)+1)/(a+b))^(1/2)*a*b*EllipticF(cot(d*x+c)-csc(d 
*x+c),(-(a-b)/(a+b))^(1/2))*(8*cos(d*x+c)+16+8*sec(d*x+c))+B*(cos(d*x+c...
 

Fricas [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x, algo 
rithm="fricas")
 

Output:

integral((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)/sqrt(sec(d*x + c)), 
 x)
 

Sympy [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\left (A + B \cos {\left (c + d x \right )}\right ) \sqrt {a + b \cos {\left (c + d x \right )}}}{\sqrt {\sec {\left (c + d x \right )}}}\, dx \] Input:

integrate((a+b*cos(d*x+c))**(1/2)*(A+B*cos(d*x+c))/sec(d*x+c)**(1/2),x)
 

Output:

Integral((A + B*cos(c + d*x))*sqrt(a + b*cos(c + d*x))/sqrt(sec(c + d*x)), 
 x)
 

Maxima [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x, algo 
rithm="maxima")
 

Output:

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)/sqrt(sec(d*x + c)) 
, x)
 

Giac [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int { \frac {{\left (B \cos \left (d x + c\right ) + A\right )} \sqrt {b \cos \left (d x + c\right ) + a}}{\sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x, algo 
rithm="giac")
 

Output:

integrate((B*cos(d*x + c) + A)*sqrt(b*cos(d*x + c) + a)/sqrt(sec(d*x + c)) 
, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\left (A+B\,\cos \left (c+d\,x\right )\right )\,\sqrt {a+b\,\cos \left (c+d\,x\right )}}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x))^(1/2))/(1/cos(c + d*x))^(1/ 
2),x)
 

Output:

int(((A + B*cos(c + d*x))*(a + b*cos(c + d*x))^(1/2))/(1/cos(c + d*x))^(1/ 
2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {a+b \cos (c+d x)} (A+B \cos (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}\, \cos \left (d x +c \right )}{\sec \left (d x +c \right )}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right ) b +a}}{\sec \left (d x +c \right )}d x \right ) a \] Input:

int((a+b*cos(d*x+c))^(1/2)*(A+B*cos(d*x+c))/sec(d*x+c)^(1/2),x)
 

Output:

int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a)*cos(c + d*x))/sec(c + d*x 
),x)*b + int((sqrt(sec(c + d*x))*sqrt(cos(c + d*x)*b + a))/sec(c + d*x),x) 
*a