\(\int \frac {(A+C \cos ^2(c+d x)) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^2} \, dx\) [1193]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 165 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^2} \, dx=\frac {(A-C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {2 (A+C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}-\frac {(A-C) \sin (c+d x)}{a^2 d (1+\cos (c+d x)) \sqrt {\sec (c+d x)}}-\frac {(A+C) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \] Output:

(A-C)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^(1 
/2)/a^2/d+2/3*(A+C)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2) 
)*sec(d*x+c)^(1/2)/a^2/d-(A-C)*sin(d*x+c)/a^2/d/(1+cos(d*x+c))/sec(d*x+c)^ 
(1/2)-1/3*(A+C)*sin(d*x+c)/d/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 7.87 (sec) , antiderivative size = 450, normalized size of antiderivative = 2.73 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^2} \, dx=\frac {\cos ^4\left (\frac {1}{2} (c+d x)\right ) \left (-2 \sqrt {2} A e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \csc (c) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right )+2 \sqrt {2} C e^{-i d x} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt {1+e^{2 i (c+d x)}} \csc (c) \left (-3 \sqrt {1+e^{2 i (c+d x)}}+e^{2 i d x} \left (-1+e^{2 i c}\right ) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right )-\frac {\left ((7 A-5 C) \cos \left (\frac {1}{2} (c-d x)\right )+2 (A-2 C) \cos \left (\frac {1}{2} (3 c+d x)\right )+3 (A-C) \cos \left (\frac {1}{2} (c+3 d x)\right )\right ) \csc \left (\frac {c}{2}\right ) \sec \left (\frac {c}{2}\right ) \sec ^3\left (\frac {1}{2} (c+d x)\right )}{2 \sqrt {\sec (c+d x)}}+8 A \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}+8 C \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}\right )}{3 a^2 d (1+\cos (c+d x))^2} \] Input:

Integrate[((A + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/(a + a*Cos[c + d*x]) 
^2,x]
 

Output:

(Cos[(c + d*x)/2]^4*((-2*Sqrt[2]*A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + 
 d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Csc[c]*(-3*Sqrt[1 + E^((2*I)*(c + d 
*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, 
-E^((2*I)*(c + d*x))]))/E^(I*d*x) + (2*Sqrt[2]*C*Sqrt[E^(I*(c + d*x))/(1 + 
 E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*Csc[c]*(-3*Sqrt[1 + E 
^((2*I)*(c + d*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1 
/2, 3/4, 7/4, -E^((2*I)*(c + d*x))]))/E^(I*d*x) - (((7*A - 5*C)*Cos[(c - d 
*x)/2] + 2*(A - 2*C)*Cos[(3*c + d*x)/2] + 3*(A - C)*Cos[(c + 3*d*x)/2])*Cs 
c[c/2]*Sec[c/2]*Sec[(c + d*x)/2]^3)/(2*Sqrt[Sec[c + d*x]]) + 8*A*Sqrt[Cos[ 
c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]] + 8*C*Sqrt[Cos[c + 
d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[Sec[c + d*x]]))/(3*a^2*d*(1 + Cos[c + 
 d*x])^2)
 

Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.94, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.343, Rules used = {3042, 4709, 3042, 3521, 27, 3042, 3457, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a \cos (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)} \left (A+C \cos (c+d x)^2\right )}{(a \cos (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 4709

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \cos ^2(c+d x)+A}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {C \sin \left (c+d x+\frac {\pi }{2}\right )^2+A}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx\)

\(\Big \downarrow \) 3521

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (5 A-C)-a (A-5 C) \cos (c+d x)}{2 \sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (5 A-C)-a (A-5 C) \cos (c+d x)}{\sqrt {\cos (c+d x)} (\cos (c+d x) a+a)}dx}{6 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {a (5 A-C)-a (A-5 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )}dx}{6 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3457

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {2 (A+C) a^2+3 (A-C) \cos (c+d x) a^2}{\sqrt {\cos (c+d x)}}dx}{a^2}-\frac {6 (A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {2 (A+C) a^2+3 (A-C) \sin \left (c+d x+\frac {\pi }{2}\right ) a^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}-\frac {6 (A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3227

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 a^2 (A+C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+3 a^2 (A-C) \int \sqrt {\cos (c+d x)}dx}{a^2}-\frac {6 (A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 a^2 (A+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+3 a^2 (A-C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}-\frac {6 (A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {2 a^2 (A+C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 a^2 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a^2}-\frac {6 (A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {4 a^2 (A+C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 a^2 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a^2}-\frac {6 (A-C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d (a \cos (c+d x)+a)^2}\right )\)

Input:

Int[((A + C*Cos[c + d*x]^2)*Sqrt[Sec[c + d*x]])/(a + a*Cos[c + d*x])^2,x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-1/3*((A + C)*Sqrt[Cos[c + d*x]]*Si 
n[c + d*x])/(d*(a + a*Cos[c + d*x])^2) + (((6*a^2*(A - C)*EllipticE[(c + d 
*x)/2, 2])/d + (4*a^2*(A + C)*EllipticF[(c + d*x)/2, 2])/d)/a^2 - (6*(A - 
C)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(1 + Cos[c + d*x])))/(6*a^2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3457
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^( 
n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) 
  Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b 
*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*(m + n + 
2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ 
[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] 
 &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
 

rule 3521
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
 + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) 
- b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b* 
c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] && LtQ[m, -2^(-1)]
 

rule 4709
Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Sec[a 
+ b*x])^m*(c*Cos[a + b*x])^m   Int[ActivateTrig[u]/(c*Cos[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(418\) vs. \(2(152)=304\).

Time = 3.38 (sec) , antiderivative size = 419, normalized size of antiderivative = 2.54

method result size
default \(\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (12 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} A -4 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+6 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-12 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-4 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}-6 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-16 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} A +20 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+3 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-9 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+A +C \right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(419\)

Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x,method=_RETUR 
NVERBOSE)
 

Output:

1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(12*cos(1/2*d* 
x+1/2*c)^6*A-4*A*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos 
(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+6*A*cos(1 
/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^( 
1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-12*C*cos(1/2*d*x+1/2*c)^6-4*C*( 
sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(co 
s(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3-6*C*cos(1/2*d*x+1/2*c)^3*(s 
in(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos 
(1/2*d*x+1/2*c),2^(1/2))-16*cos(1/2*d*x+1/2*c)^4*A+20*C*cos(1/2*d*x+1/2*c) 
^4+3*A*cos(1/2*d*x+1/2*c)^2-9*C*cos(1/2*d*x+1/2*c)^2+A+C)/a^2/cos(1/2*d*x+ 
1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+ 
1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 365, normalized size of antiderivative = 2.21 \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^2} \, dx=-\frac {2 \, {\left (\sqrt {2} {\left (i \, A + i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A + i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 2 \, {\left (\sqrt {2} {\left (-i \, A - i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (-i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A - i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, {\left (\sqrt {2} {\left (-i \, A + i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (-i \, A + i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (\sqrt {2} {\left (i \, A - i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (i \, A - i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + \frac {2 \, {\left (3 \, {\left (A - C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (2 \, A - C\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algori 
thm="fricas")
 

Output:

-1/6*(2*(sqrt(2)*(I*A + I*C)*cos(d*x + c)^2 + 2*sqrt(2)*(I*A + I*C)*cos(d* 
x + c) + sqrt(2)*(I*A + I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) + I* 
sin(d*x + c)) + 2*(sqrt(2)*(-I*A - I*C)*cos(d*x + c)^2 + 2*sqrt(2)*(-I*A - 
 I*C)*cos(d*x + c) + sqrt(2)*(-I*A - I*C))*weierstrassPInverse(-4, 0, cos( 
d*x + c) - I*sin(d*x + c)) + 3*(sqrt(2)*(-I*A + I*C)*cos(d*x + c)^2 + 2*sq 
rt(2)*(-I*A + I*C)*cos(d*x + c) + sqrt(2)*(-I*A + I*C))*weierstrassZeta(-4 
, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) + 3*(sqrt( 
2)*(I*A - I*C)*cos(d*x + c)^2 + 2*sqrt(2)*(I*A - I*C)*cos(d*x + c) + sqrt( 
2)*(I*A - I*C))*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x 
+ c) - I*sin(d*x + c))) + 2*(3*(A - C)*cos(d*x + c)^2 + 2*(2*A - C)*cos(d* 
x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*c 
os(d*x + c) + a^2*d)
 

Sympy [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^2} \, dx=\frac {\int \frac {A \sqrt {\sec {\left (c + d x \right )}}}{\cos ^{2}{\left (c + d x \right )} + 2 \cos {\left (c + d x \right )} + 1}\, dx + \int \frac {C \cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}}}{\cos ^{2}{\left (c + d x \right )} + 2 \cos {\left (c + d x \right )} + 1}\, dx}{a^{2}} \] Input:

integrate((A+C*cos(d*x+c)**2)*sec(d*x+c)**(1/2)/(a+a*cos(d*x+c))**2,x)
 

Output:

(Integral(A*sqrt(sec(c + d*x))/(cos(c + d*x)**2 + 2*cos(c + d*x) + 1), x) 
+ Integral(C*cos(c + d*x)**2*sqrt(sec(c + d*x))/(cos(c + d*x)**2 + 2*cos(c 
 + d*x) + 1), x))/a**2
 

Maxima [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^2} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algori 
thm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sqrt(sec(d*x + c))/(a*cos(d*x + c) + a)^2 
, x)
 

Giac [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^2} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {\sec \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x, algori 
thm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sqrt(sec(d*x + c))/(a*cos(d*x + c) + a)^2 
, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^2} \, dx=\int \frac {\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )\,\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \] Input:

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(1/2))/(a + a*cos(c + d*x))^2 
,x)
 

Output:

int(((A + C*cos(c + d*x)^2)*(1/cos(c + d*x))^(1/2))/(a + a*cos(c + d*x))^2 
, x)
 

Reduce [F]

\[ \int \frac {\left (A+C \cos ^2(c+d x)\right ) \sqrt {\sec (c+d x)}}{(a+a \cos (c+d x))^2} \, dx=\frac {\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1}d x \right ) c}{a^{2}} \] Input:

int((A+C*cos(d*x+c)^2)*sec(d*x+c)^(1/2)/(a+a*cos(d*x+c))^2,x)
 

Output:

(int(sqrt(sec(c + d*x))/(cos(c + d*x)**2 + 2*cos(c + d*x) + 1),x)*a + int( 
(sqrt(sec(c + d*x))*cos(c + d*x)**2)/(cos(c + d*x)**2 + 2*cos(c + d*x) + 1 
),x)*c)/a**2