\(\int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx\) [1194]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 166 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx=\frac {4 C \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {(A-5 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}-\frac {(A+C) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x)}+\frac {(A-5 C) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x)) \sqrt {\sec (c+d x)}} \] Output:

4*C*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c)^(1/2 
)/a^2/d+1/3*(A-5*C)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2) 
)*sec(d*x+c)^(1/2)/a^2/d-1/3*(A+C)*sin(d*x+c)/d/(a+a*cos(d*x+c))^2/sec(d*x 
+c)^(3/2)+1/3*(A-5*C)*sin(d*x+c)/a^2/d/(1+cos(d*x+c))/sec(d*x+c)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 3.77 (sec) , antiderivative size = 267, normalized size of antiderivative = 1.61 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx=\frac {e^{-3 i (c+d x)} \left (1+e^{i (c+d x)}\right ) \left (i \left (1+e^{2 i (c+d x)}\right ) \left (-A e^{i (c+d x)} \left (-1+e^{i (c+d x)}\right )+C \left (3+16 e^{i (c+d x)}+20 e^{2 i (c+d x)}+9 e^{3 i (c+d x)}\right )\right )+(A-5 C) e^{i (c+d x)} \left (1+e^{i (c+d x)}\right )^3 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-4 i C e^{2 i (c+d x)} \left (1+e^{i (c+d x)}\right )^3 \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) \sqrt {\sec (c+d x)}}{12 a^2 d (1+\cos (c+d x))^2} \] Input:

Integrate[(A + C*Cos[c + d*x]^2)/((a + a*Cos[c + d*x])^2*Sqrt[Sec[c + d*x] 
]),x]
 

Output:

((1 + E^(I*(c + d*x)))*(I*(1 + E^((2*I)*(c + d*x)))*(-(A*E^(I*(c + d*x))*( 
-1 + E^(I*(c + d*x)))) + C*(3 + 16*E^(I*(c + d*x)) + 20*E^((2*I)*(c + d*x) 
) + 9*E^((3*I)*(c + d*x)))) + (A - 5*C)*E^(I*(c + d*x))*(1 + E^(I*(c + d*x 
)))^3*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2] - (4*I)*C*E^((2*I)*(c + 
 d*x))*(1 + E^(I*(c + d*x)))^3*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometri 
c2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])*Sqrt[Sec[c + d*x]])/(12*a^2*d*E 
^((3*I)*(c + d*x))*(1 + Cos[c + d*x])^2)
 

Rubi [A] (verified)

Time = 0.97 (sec) , antiderivative size = 153, normalized size of antiderivative = 0.92, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.343, Rules used = {3042, 4709, 3042, 3521, 27, 3042, 3456, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\sec (c+d x)} (a \cos (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \cos (c+d x)^2}{\sqrt {\sec (c+d x)} (a \cos (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 4709

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\cos (c+d x)} \left (C \cos ^2(c+d x)+A\right )}{(\cos (c+d x) a+a)^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (C \sin \left (c+d x+\frac {\pi }{2}\right )^2+A\right )}{\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx\)

\(\Big \downarrow \) 3521

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\cos (c+d x)} (3 a (A-C)+a (A+7 C) \cos (c+d x))}{2 (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\cos (c+d x)} (3 a (A-C)+a (A+7 C) \cos (c+d x))}{\cos (c+d x) a+a}dx}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (3 a (A-C)+a (A+7 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3456

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {(A-5 C) a^2+12 C \cos (c+d x) a^2}{\sqrt {\cos (c+d x)}}dx}{a^2}+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int \frac {(A-5 C) a^2+12 C \sin \left (c+d x+\frac {\pi }{2}\right ) a^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a^2}+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3227

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {a^2 (A-5 C) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+12 a^2 C \int \sqrt {\cos (c+d x)}dx}{a^2}+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {a^2 (A-5 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+12 a^2 C \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a^2}+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {a^2 (A-5 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {24 a^2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a^2}+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\frac {2 a^2 (A-5 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {24 a^2 C E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a^2}+\frac {2 (A-5 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

Input:

Int[(A + C*Cos[c + d*x]^2)/((a + a*Cos[c + d*x])^2*Sqrt[Sec[c + d*x]]),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-1/3*((A + C)*Cos[c + d*x]^(3/2)*Si 
n[c + d*x])/(d*(a + a*Cos[c + d*x])^2) + (((24*a^2*C*EllipticE[(c + d*x)/2 
, 2])/d + (2*a^2*(A - 5*C)*EllipticF[(c + d*x)/2, 2])/d)/a^2 + (2*(A - 5*C 
)*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(d*(1 + Cos[c + d*x])))/(6*a^2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3456
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + 
 b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] & 
& NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (In 
tegerQ[2*n] || EqQ[c, 0])
 

rule 3521
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
 + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) 
- b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b* 
c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] && LtQ[m, -2^(-1)]
 

rule 4709
Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Sec[a 
+ b*x])^m*(c*Cos[a + b*x])^m   Int[ActivateTrig[u]/(c*Cos[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(347\) vs. \(2(151)=302\).

Time = 4.42 (sec) , antiderivative size = 348, normalized size of antiderivative = 2.10

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (2 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-24 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}-10 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}-24 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} A +38 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-3 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-15 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+A +C \right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(348\)

Input:

int((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x,method=_RETUR 
NVERBOSE)
 

Output:

-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*A*cos(1/2* 
d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2 
)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-24*C*cos(1/2*d*x+1/2*c)^6-10*C*(si 
n(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos( 
1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3-24*C*cos(1/2*d*x+1/2*c)^3*(si 
n(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos( 
1/2*d*x+1/2*c),2^(1/2))+2*cos(1/2*d*x+1/2*c)^4*A+38*C*cos(1/2*d*x+1/2*c)^4 
-3*A*cos(1/2*d*x+1/2*c)^2-15*C*cos(1/2*d*x+1/2*c)^2+A+C)/a^2/cos(1/2*d*x+1 
/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1 
/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 325, normalized size of antiderivative = 1.96 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx=\frac {{\left (\sqrt {2} {\left (-i \, A + 5 i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (i \, A - 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A + 5 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + {\left (\sqrt {2} {\left (i \, A - 5 i \, C\right )} \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} {\left (-i \, A + 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A - 5 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 12 \, {\left (-i \, \sqrt {2} C \cos \left (d x + c\right )^{2} - 2 i \, \sqrt {2} C \cos \left (d x + c\right ) - i \, \sqrt {2} C\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 12 \, {\left (i \, \sqrt {2} C \cos \left (d x + c\right )^{2} + 2 i \, \sqrt {2} C \cos \left (d x + c\right ) + i \, \sqrt {2} C\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (6 \, C \cos \left (d x + c\right )^{2} - {\left (A - 5 \, C\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \] Input:

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algori 
thm="fricas")
 

Output:

1/6*((sqrt(2)*(-I*A + 5*I*C)*cos(d*x + c)^2 - 2*sqrt(2)*(I*A - 5*I*C)*cos( 
d*x + c) + sqrt(2)*(-I*A + 5*I*C))*weierstrassPInverse(-4, 0, cos(d*x + c) 
 + I*sin(d*x + c)) + (sqrt(2)*(I*A - 5*I*C)*cos(d*x + c)^2 - 2*sqrt(2)*(-I 
*A + 5*I*C)*cos(d*x + c) + sqrt(2)*(I*A - 5*I*C))*weierstrassPInverse(-4, 
0, cos(d*x + c) - I*sin(d*x + c)) - 12*(-I*sqrt(2)*C*cos(d*x + c)^2 - 2*I* 
sqrt(2)*C*cos(d*x + c) - I*sqrt(2)*C)*weierstrassZeta(-4, 0, weierstrassPI 
nverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 12*(I*sqrt(2)*C*cos(d*x + 
c)^2 + 2*I*sqrt(2)*C*cos(d*x + c) + I*sqrt(2)*C)*weierstrassZeta(-4, 0, we 
ierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(6*C*cos(d*x 
+ c)^2 - (A - 5*C)*cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^2*d*c 
os(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)
 

Sympy [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx=\frac {\int \frac {A}{\cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + 2 \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + \sqrt {\sec {\left (c + d x \right )}}}\, dx + \int \frac {C \cos ^{2}{\left (c + d x \right )}}{\cos ^{2}{\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + 2 \cos {\left (c + d x \right )} \sqrt {\sec {\left (c + d x \right )}} + \sqrt {\sec {\left (c + d x \right )}}}\, dx}{a^{2}} \] Input:

integrate((A+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**2/sec(d*x+c)**(1/2),x)
 

Output:

(Integral(A/(cos(c + d*x)**2*sqrt(sec(c + d*x)) + 2*cos(c + d*x)*sqrt(sec( 
c + d*x)) + sqrt(sec(c + d*x))), x) + Integral(C*cos(c + d*x)**2/(cos(c + 
d*x)**2*sqrt(sec(c + d*x)) + 2*cos(c + d*x)*sqrt(sec(c + d*x)) + sqrt(sec( 
c + d*x))), x))/a**2
 

Maxima [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algori 
thm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c) 
)), x)
 

Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sqrt {\sec \left (d x + c\right )}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x, algori 
thm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)^2*sqrt(sec(d*x + c) 
)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \] Input:

int((A + C*cos(c + d*x)^2)/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^2) 
,x)
 

Output:

int((A + C*cos(c + d*x)^2)/((1/cos(c + d*x))^(1/2)*(a + a*cos(c + d*x))^2) 
, x)
 

Reduce [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sqrt {\sec (c+d x)}} \, dx=\frac {\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\cos \left (d x +c \right )^{2} \sec \left (d x +c \right )+2 \cos \left (d x +c \right ) \sec \left (d x +c \right )+\sec \left (d x +c \right )}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right )^{2} \sec \left (d x +c \right )+2 \cos \left (d x +c \right ) \sec \left (d x +c \right )+\sec \left (d x +c \right )}d x \right ) c}{a^{2}} \] Input:

int((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2/sec(d*x+c)^(1/2),x)
 

Output:

(int(sqrt(sec(c + d*x))/(cos(c + d*x)**2*sec(c + d*x) + 2*cos(c + d*x)*sec 
(c + d*x) + sec(c + d*x)),x)*a + int((sqrt(sec(c + d*x))*cos(c + d*x)**2)/ 
(cos(c + d*x)**2*sec(c + d*x) + 2*cos(c + d*x)*sec(c + d*x) + sec(c + d*x) 
),x)*c)/a**2