\(\int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x)} \, dx\) [1195]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 201 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {(A+7 C) \sqrt {\cos (c+d x)} E\left (\left .\frac {1}{2} (c+d x)\right |2\right ) \sqrt {\sec (c+d x)}}{a^2 d}+\frac {2 (A+5 C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {\sec (c+d x)}}{3 a^2 d}-\frac {(A+C) \sin (c+d x)}{3 d (a+a \cos (c+d x))^2 \sec ^{\frac {5}{2}}(c+d x)}-\frac {(A+7 C) \sin (c+d x)}{3 a^2 d (1+\cos (c+d x)) \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (A+5 C) \sin (c+d x)}{3 a^2 d \sqrt {\sec (c+d x)}} \] Output:

-(A+7*C)*cos(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))*sec(d*x+c) 
^(1/2)/a^2/d+2/3*(A+5*C)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^ 
(1/2))*sec(d*x+c)^(1/2)/a^2/d-1/3*(A+C)*sin(d*x+c)/d/(a+a*cos(d*x+c))^2/se 
c(d*x+c)^(5/2)-1/3*(A+7*C)*sin(d*x+c)/a^2/d/(1+cos(d*x+c))/sec(d*x+c)^(3/2 
)+2/3*(A+5*C)*sin(d*x+c)/a^2/d/sec(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 9.49 (sec) , antiderivative size = 762, normalized size of antiderivative = 3.79 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x)} \, dx =\text {Too large to display} \] Input:

Integrate[(A + C*Cos[c + d*x]^2)/((a + a*Cos[c + d*x])^2*Sec[c + d*x]^(3/2 
)),x]
 

Output:

(Sqrt[2]*A*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2* 
I)*(c + d*x))]*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c + d* 
x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, - 
E^((2*I)*(c + d*x))])*Sec[c/2])/(3*d*E^(I*d*x)*(a + a*Cos[c + d*x])^2) + ( 
7*Sqrt[2]*C*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2 
*I)*(c + d*x))]*Cos[c/2 + (d*x)/2]^4*Csc[c/2]*(-3*Sqrt[1 + E^((2*I)*(c + d 
*x))] + E^((2*I)*d*x)*(-1 + E^((2*I)*c))*Hypergeometric2F1[1/2, 3/4, 7/4, 
-E^((2*I)*(c + d*x))])*Sec[c/2])/(3*d*E^(I*d*x)*(a + a*Cos[c + d*x])^2) + 
(4*A*Cos[c/2 + (d*x)/2]^4*Sqrt[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c + d*x)/ 
2, 2]*Sec[c/2]*Sqrt[Sec[c + d*x]]*Sin[c])/(3*d*(a + a*Cos[c + d*x])^2) + ( 
20*C*Cos[c/2 + (d*x)/2]^4*Sqrt[Cos[c + d*x]]*Csc[c/2]*EllipticF[(c + d*x)/ 
2, 2]*Sec[c/2]*Sqrt[Sec[c + d*x]]*Sin[c])/(3*d*(a + a*Cos[c + d*x])^2) + ( 
Cos[c/2 + (d*x)/2]^4*Sqrt[Sec[c + d*x]]*((2*(A + 5*C + 2*C*Cos[2*c])*Cos[d 
*x]*Csc[c/2]*Sec[c/2])/d + (4*C*Cos[2*d*x]*Sin[2*c])/(3*d) + (2*Sec[c/2]*S 
ec[c/2 + (d*x)/2]^3*(A*Sin[(d*x)/2] + C*Sin[(d*x)/2]))/(3*d) - (8*Sec[c/2] 
*Sec[c/2 + (d*x)/2]*(2*A*Sin[(d*x)/2] + 5*C*Sin[(d*x)/2]))/(3*d) - (16*C*C 
os[c]*Sin[d*x])/d + (4*C*Cos[2*c]*Sin[2*d*x])/(3*d) - (8*(2*A + 5*C)*Tan[c 
/2])/(3*d) + (2*(A + C)*Sec[c/2 + (d*x)/2]^2*Tan[c/2])/(3*d)))/(a + a*Cos[ 
c + d*x])^2
 

Rubi [A] (verified)

Time = 1.17 (sec) , antiderivative size = 186, normalized size of antiderivative = 0.93, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 4709, 3042, 3521, 27, 3042, 3456, 27, 3042, 3227, 3042, 3115, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \cos ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) (a \cos (c+d x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \cos (c+d x)^2}{\sec (c+d x)^{3/2} (a \cos (c+d x)+a)^2}dx\)

\(\Big \downarrow \) 4709

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\cos ^{\frac {3}{2}}(c+d x) \left (C \cos ^2(c+d x)+A\right )}{(\cos (c+d x) a+a)^2}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (C \sin \left (c+d x+\frac {\pi }{2}\right )^2+A\right )}{\left (\sin \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^2}dx\)

\(\Big \downarrow \) 3521

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\cos ^{\frac {3}{2}}(c+d x) (a (A-5 C)+3 a (A+3 C) \cos (c+d x))}{2 (\cos (c+d x) a+a)}dx}{3 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\cos ^{\frac {3}{2}}(c+d x) (a (A-5 C)+3 a (A+3 C) \cos (c+d x))}{\cos (c+d x) a+a}dx}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a (A-5 C)+3 a (A+3 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3456

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {\int -3 \sqrt {\cos (c+d x)} \left (a^2 (A+7 C)-2 a^2 (A+5 C) \cos (c+d x)\right )dx}{a^2}-\frac {2 (A+7 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {-\frac {3 \int \sqrt {\cos (c+d x)} \left (a^2 (A+7 C)-2 a^2 (A+5 C) \cos (c+d x)\right )dx}{a^2}-\frac {2 (A+7 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {-\frac {3 \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a^2 (A+7 C)-2 a^2 (A+5 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx}{a^2}-\frac {2 (A+7 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3227

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {-\frac {3 \left (a^2 (A+7 C) \int \sqrt {\cos (c+d x)}dx-2 a^2 (A+5 C) \int \cos ^{\frac {3}{2}}(c+d x)dx\right )}{a^2}-\frac {2 (A+7 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {-\frac {3 \left (a^2 (A+7 C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-2 a^2 (A+5 C) \int \sin \left (c+d x+\frac {\pi }{2}\right )^{3/2}dx\right )}{a^2}-\frac {2 (A+7 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3115

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {-\frac {3 \left (a^2 (A+7 C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-2 a^2 (A+5 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )}{a^2}-\frac {2 (A+7 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {-\frac {3 \left (a^2 (A+7 C) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx-2 a^2 (A+5 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )}{a^2}-\frac {2 (A+7 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3119

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {-\frac {3 \left (\frac {2 a^2 (A+7 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-2 a^2 (A+5 C) \left (\frac {1}{3} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )}{a^2}-\frac {2 (A+7 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

\(\Big \downarrow \) 3120

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {-\frac {3 \left (\frac {2 a^2 (A+7 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}-2 a^2 (A+5 C) \left (\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 d}+\frac {2 \sin (c+d x) \sqrt {\cos (c+d x)}}{3 d}\right )\right )}{a^2}-\frac {2 (A+7 C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{d (\cos (c+d x)+1)}}{6 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {5}{2}}(c+d x)}{3 d (a \cos (c+d x)+a)^2}\right )\)

Input:

Int[(A + C*Cos[c + d*x]^2)/((a + a*Cos[c + d*x])^2*Sec[c + d*x]^(3/2)),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*(-1/3*((A + C)*Cos[c + d*x]^(5/2)*Si 
n[c + d*x])/(d*(a + a*Cos[c + d*x])^2) + ((-2*(A + 7*C)*Cos[c + d*x]^(3/2) 
*Sin[c + d*x])/(d*(1 + Cos[c + d*x])) - (3*((2*a^2*(A + 7*C)*EllipticE[(c 
+ d*x)/2, 2])/d - 2*a^2*(A + 5*C)*((2*EllipticF[(c + d*x)/2, 2])/(3*d) + ( 
2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/(3*d))))/a^2)/(6*a^2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3456
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/( 
a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + 
 b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] & 
& NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (In 
tegerQ[2*n] || EqQ[c, 0])
 

rule 3521
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
 + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) 
- b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b* 
c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] && LtQ[m, -2^(-1)]
 

rule 4709
Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Sec[a 
+ b*x])^m*(c*Cos[a + b*x])^m   Int[ActivateTrig[u]/(c*Cos[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u, x]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(436\) vs. \(2(182)=364\).

Time = 5.34 (sec) , antiderivative size = 437, normalized size of antiderivative = 2.17

method result size
default \(-\frac {\sqrt {\left (2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right ) \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \left (16 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+12 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} A +4 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+6 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+12 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+20 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticF}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}+42 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+1}\, \operatorname {EllipticE}\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-20 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} A -48 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+9 A \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+21 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-A -C \right )}{6 a^{2} \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{3} \sqrt {-2 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1}\, d}\) \(437\)

Input:

int((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2/sec(d*x+c)^(3/2),x,method=_RETUR 
NVERBOSE)
 

Output:

-1/6*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(16*C*cos(1/2 
*d*x+1/2*c)^8+12*cos(1/2*d*x+1/2*c)^6*A+4*A*cos(1/2*d*x+1/2*c)^3*(sin(1/2* 
d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d* 
x+1/2*c),2^(1/2))+6*A*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(- 
2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+12*C 
*cos(1/2*d*x+1/2*c)^6+20*C*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/ 
2*c)^2+1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*cos(1/2*d*x+1/2*c)^3 
+42*C*cos(1/2*d*x+1/2*c)^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/ 
2*c)^2+1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-20*cos(1/2*d*x+1/2*c 
)^4*A-48*C*cos(1/2*d*x+1/2*c)^4+9*A*cos(1/2*d*x+1/2*c)^2+21*C*cos(1/2*d*x+ 
1/2*c)^2-A-C)/a^2/cos(1/2*d*x+1/2*c)^3/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d* 
x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.11 (sec) , antiderivative size = 375, normalized size of antiderivative = 1.87 \[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (\sqrt {2} {\left (i \, A + 5 i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (i \, A + 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A + 5 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 2 \, {\left (\sqrt {2} {\left (-i \, A - 5 i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (-i \, A - 5 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A - 5 i \, C\right )}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 3 \, {\left (\sqrt {2} {\left (i \, A + 7 i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (i \, A + 7 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (i \, A + 7 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 \, {\left (\sqrt {2} {\left (-i \, A - 7 i \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} {\left (-i \, A - 7 i \, C\right )} \cos \left (d x + c\right ) + \sqrt {2} {\left (-i \, A - 7 i \, C\right )}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - \frac {2 \, {\left (2 \, C \cos \left (d x + c\right )^{3} + {\left (3 \, A + 13 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (A + 5 \, C\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \] Input:

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2/sec(d*x+c)^(3/2),x, algori 
thm="fricas")
 

Output:

-1/6*(2*(sqrt(2)*(I*A + 5*I*C)*cos(d*x + c)^2 + 2*sqrt(2)*(I*A + 5*I*C)*co 
s(d*x + c) + sqrt(2)*(I*A + 5*I*C))*weierstrassPInverse(-4, 0, cos(d*x + c 
) + I*sin(d*x + c)) + 2*(sqrt(2)*(-I*A - 5*I*C)*cos(d*x + c)^2 + 2*sqrt(2) 
*(-I*A - 5*I*C)*cos(d*x + c) + sqrt(2)*(-I*A - 5*I*C))*weierstrassPInverse 
(-4, 0, cos(d*x + c) - I*sin(d*x + c)) + 3*(sqrt(2)*(I*A + 7*I*C)*cos(d*x 
+ c)^2 + 2*sqrt(2)*(I*A + 7*I*C)*cos(d*x + c) + sqrt(2)*(I*A + 7*I*C))*wei 
erstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + 
c))) + 3*(sqrt(2)*(-I*A - 7*I*C)*cos(d*x + c)^2 + 2*sqrt(2)*(-I*A - 7*I*C) 
*cos(d*x + c) + sqrt(2)*(-I*A - 7*I*C))*weierstrassZeta(-4, 0, weierstrass 
PInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - 2*(2*C*cos(d*x + c)^3 + 
(3*A + 13*C)*cos(d*x + c)^2 + 2*(A + 5*C)*cos(d*x + c))*sin(d*x + c)/sqrt( 
cos(d*x + c)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((A+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**2/sec(d*x+c)**(3/2),x)
 

Output:

Timed out
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2/sec(d*x+c)^(3/2),x, algori 
thm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)^2*sec(d*x + c)^(3/2 
)), x)
 

Giac [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{2} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2/sec(d*x+c)^(3/2),x, algori 
thm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)^2*sec(d*x + c)^(3/2 
)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^2} \,d x \] Input:

int((A + C*cos(c + d*x)^2)/((1/cos(c + d*x))^(3/2)*(a + a*cos(c + d*x))^2) 
,x)
 

Output:

int((A + C*cos(c + d*x)^2)/((1/cos(c + d*x))^(3/2)*(a + a*cos(c + d*x))^2) 
, x)
 

Reduce [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{(a+a \cos (c+d x))^2 \sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\left (\int \frac {\sqrt {\sec \left (d x +c \right )}}{\cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}+2 \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}+\sec \left (d x +c \right )^{2}}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right )^{2} \sec \left (d x +c \right )^{2}+2 \cos \left (d x +c \right ) \sec \left (d x +c \right )^{2}+\sec \left (d x +c \right )^{2}}d x \right ) c}{a^{2}} \] Input:

int((A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^2/sec(d*x+c)^(3/2),x)
 

Output:

(int(sqrt(sec(c + d*x))/(cos(c + d*x)**2*sec(c + d*x)**2 + 2*cos(c + d*x)* 
sec(c + d*x)**2 + sec(c + d*x)**2),x)*a + int((sqrt(sec(c + d*x))*cos(c + 
d*x)**2)/(cos(c + d*x)**2*sec(c + d*x)**2 + 2*cos(c + d*x)*sec(c + d*x)**2 
 + sec(c + d*x)**2),x)*c)/a**2