\(\int \frac {\sqrt {\cos (c+d x)} (A+C \cos ^2(c+d x))}{(a+a \cos (c+d x))^{3/2}} \, dx\) [206]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 188 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^{3/2}} \, dx=-\frac {3 C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a^{3/2} d}+\frac {(A+9 C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \cos ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}}+\frac {(A+3 C) \sqrt {\cos (c+d x)} \sin (c+d x)}{2 a d \sqrt {a+a \cos (c+d x)}} \] Output:

-3*C*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))/a^(3/2)/d+1/4*(A+9* 
C)*arctan(1/2*a^(1/2)*sin(d*x+c)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c)) 
^(1/2))*2^(1/2)/a^(3/2)/d-1/2*(A+C)*cos(d*x+c)^(3/2)*sin(d*x+c)/d/(a+a*cos 
(d*x+c))^(3/2)+1/2*(A+3*C)*cos(d*x+c)^(1/2)*sin(d*x+c)/a/d/(a+a*cos(d*x+c) 
)^(1/2)
 

Mathematica [A] (warning: unable to verify)

Time = 0.65 (sec) , antiderivative size = 319, normalized size of antiderivative = 1.70 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {\left (-\sqrt {2} A \arctan \left (\frac {\sqrt {\cos (c+d x)}}{\sqrt {\sin ^2\left (\frac {1}{2} (c+d x)\right )}}\right )-9 \sqrt {2} C \arctan \left (\frac {\sqrt {\cos (c+d x)}}{\sqrt {\sin ^2\left (\frac {1}{2} (c+d x)\right )}}\right )-\sqrt {2} A \arctan \left (\frac {\sqrt {\cos (c+d x)}}{\sqrt {\sin ^2\left (\frac {1}{2} (c+d x)\right )}}\right ) \cos (c+d x)-9 \sqrt {2} C \arctan \left (\frac {\sqrt {\cos (c+d x)}}{\sqrt {\sin ^2\left (\frac {1}{2} (c+d x)\right )}}\right ) \cos (c+d x)+4 C \sqrt {1-\cos (c+d x)} \cos ^{\frac {3}{2}}(c+d x)+2 A \sqrt {-((-1+\cos (c+d x)) \cos (c+d x))}+6 C \sqrt {-((-1+\cos (c+d x)) \cos (c+d x))}+6 C \arcsin \left (\sqrt {1-\cos (c+d x)}\right ) (1+\cos (c+d x))+18 C \arcsin \left (\sqrt {\cos (c+d x)}\right ) (1+\cos (c+d x))\right ) \sin (c+d x)}{4 d \sqrt {1-\cos (c+d x)} (a (1+\cos (c+d x)))^{3/2}} \] Input:

Integrate[(Sqrt[Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x]) 
^(3/2),x]
 

Output:

((-(Sqrt[2]*A*ArcTan[Sqrt[Cos[c + d*x]]/Sqrt[Sin[(c + d*x)/2]^2]]) - 9*Sqr 
t[2]*C*ArcTan[Sqrt[Cos[c + d*x]]/Sqrt[Sin[(c + d*x)/2]^2]] - Sqrt[2]*A*Arc 
Tan[Sqrt[Cos[c + d*x]]/Sqrt[Sin[(c + d*x)/2]^2]]*Cos[c + d*x] - 9*Sqrt[2]* 
C*ArcTan[Sqrt[Cos[c + d*x]]/Sqrt[Sin[(c + d*x)/2]^2]]*Cos[c + d*x] + 4*C*S 
qrt[1 - Cos[c + d*x]]*Cos[c + d*x]^(3/2) + 2*A*Sqrt[-((-1 + Cos[c + d*x])* 
Cos[c + d*x])] + 6*C*Sqrt[-((-1 + Cos[c + d*x])*Cos[c + d*x])] + 6*C*ArcSi 
n[Sqrt[1 - Cos[c + d*x]]]*(1 + Cos[c + d*x]) + 18*C*ArcSin[Sqrt[Cos[c + d* 
x]]]*(1 + Cos[c + d*x]))*Sin[c + d*x])/(4*d*Sqrt[1 - Cos[c + d*x]]*(a*(1 + 
 Cos[c + d*x]))^(3/2))
 

Rubi [A] (verified)

Time = 1.14 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.03, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.324, Rules used = {3042, 3521, 27, 3042, 3462, 3042, 3461, 3042, 3253, 223, 3261, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a \cos (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 3521

\(\displaystyle \frac {\int \frac {\sqrt {\cos (c+d x)} (a (A-3 C)+2 a (A+3 C) \cos (c+d x))}{2 \sqrt {\cos (c+d x) a+a}}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sqrt {\cos (c+d x)} (a (A-3 C)+2 a (A+3 C) \cos (c+d x))}{\sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a (A-3 C)+2 a (A+3 C) \sin \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3462

\(\displaystyle \frac {\frac {\int \frac {a^2 (A+3 C)-6 a^2 C \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{a}+\frac {2 a (A+3 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {a^2 (A+3 C)-6 a^2 C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{a}+\frac {2 a (A+3 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3461

\(\displaystyle \frac {\frac {a^2 (A+9 C) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx-6 a C \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx}{a}+\frac {2 a (A+3 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {a^2 (A+9 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-6 a C \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}+\frac {2 a (A+3 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3253

\(\displaystyle \frac {\frac {a^2 (A+9 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {12 a C \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}}{a}+\frac {2 a (A+3 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {\frac {a^2 (A+9 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {12 a^{3/2} C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{a}+\frac {2 a (A+3 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3261

\(\displaystyle \frac {\frac {-\frac {2 a^3 (A+9 C) \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x) a^3}{\cos (c+d x) a+a}+2 a^2}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}\right )}{d}-\frac {12 a^{3/2} C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{a}+\frac {2 a (A+3 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\frac {\sqrt {2} a^{3/2} (A+9 C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {12 a^{3/2} C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{a}+\frac {2 a (A+3 C) \sin (c+d x) \sqrt {\cos (c+d x)}}{d \sqrt {a \cos (c+d x)+a}}}{4 a^2}-\frac {(A+C) \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x)}{2 d (a \cos (c+d x)+a)^{3/2}}\)

Input:

Int[(Sqrt[Cos[c + d*x]]*(A + C*Cos[c + d*x]^2))/(a + a*Cos[c + d*x])^(3/2) 
,x]
 

Output:

-1/2*((A + C)*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(d*(a + a*Cos[c + d*x])^(3/ 
2)) + (((-12*a^(3/2)*C*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d* 
x]]])/d + (Sqrt[2]*a^(3/2)*(A + 9*C)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2 
]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/d)/a + (2*a*(A + 3*C)*Sqr 
t[Cos[c + d*x]]*Sin[c + d*x])/(d*Sqrt[a + a*Cos[c + d*x]]))/(4*a^2)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3461
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Sim 
p[(A*b - a*B)/b   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]) 
, x], x] + Simp[B/b   Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]] 
, x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3462
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(-B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(f*(m + 
n + 1))), x] + Simp[1/(b*(m + n + 1))   Int[(a + b*Sin[e + f*x])^m*(c + d*S 
in[e + f*x])^(n - 1)*Simp[A*b*c*(m + n + 1) + B*(a*c*m + b*d*n) + (A*b*d*(m 
 + n + 1) + B*(a*d*m + b*c*n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
- d^2, 0] && GtQ[n, 0] && (IntegerQ[n] || EqQ[m + 1/2, 0])
 

rule 3521
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
 + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) 
- b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b* 
c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] && LtQ[m, -2^(-1)]
 
Maple [A] (verified)

Time = 4.61 (sec) , antiderivative size = 239, normalized size of antiderivative = 1.27

method result size
default \(-\frac {\left (\left (6 \cos \left (d x +c \right )+6\right ) \sqrt {2}\, C \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )-A \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\sin \left (d x +c \right ) \left (-2 \cos \left (d x +c \right )-3\right ) \sqrt {2}\, C \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+\left (1+\cos \left (d x +c \right )\right ) A \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )+\left (9 \cos \left (d x +c \right )+9\right ) C \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )\right ) \sqrt {2}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \sqrt {\cos \left (d x +c \right )}}{4 d \,a^{2} \left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(239\)
parts \(\frac {A \sqrt {\cos \left (d x +c \right )}\, \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right ) \sqrt {2}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )-\arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )\right )}{8 d \,a^{2} \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}-\frac {C \left (\left (6 \cos \left (d x +c \right )+6\right ) \sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )+\sin \left (d x +c \right ) \left (-2 \cos \left (d x +c \right )-3\right ) \sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+\left (9 \cos \left (d x +c \right )+9\right ) \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )\right ) \sqrt {\cos \left (d x +c \right )}\, \sqrt {2}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}}{4 d \,a^{2} \left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(312\)

Input:

int(cos(d*x+c)^(1/2)*(A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x,method=_R 
ETURNVERBOSE)
 

Output:

-1/4/d/a^2*((6*cos(d*x+c)+6)*2^(1/2)*C*arctan((cos(d*x+c)/(1+cos(d*x+c)))^ 
(1/2)*tan(d*x+c))-A*2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+s 
in(d*x+c)*(-2*cos(d*x+c)-3)*2^(1/2)*C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+(1 
+cos(d*x+c))*A*arcsin(-csc(d*x+c)+cot(d*x+c))+(9*cos(d*x+c)+9)*C*arcsin(-c 
sc(d*x+c)+cot(d*x+c)))*2^(1/2)*(a*(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^(1/2)/( 
cos(d*x+c)^2+2*cos(d*x+c)+1)/(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 2.61 (sec) , antiderivative size = 251, normalized size of antiderivative = 1.34 \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {\sqrt {2} {\left ({\left (A + 9 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (A + 9 \, C\right )} \cos \left (d x + c\right ) + A + 9 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )}}\right ) + 2 \, {\left (2 \, C \cos \left (d x + c\right ) + A + 3 \, C\right )} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 12 \, {\left (C \cos \left (d x + c\right )^{2} + 2 \, C \cos \left (d x + c\right ) + C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )}\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \] Input:

integrate(cos(d*x+c)^(1/2)*(A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x, al 
gorithm="fricas")
 

Output:

1/4*(sqrt(2)*((A + 9*C)*cos(d*x + c)^2 + 2*(A + 9*C)*cos(d*x + c) + A + 9* 
C)*sqrt(a)*arctan(1/2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sqrt(cos(d* 
x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 + a*cos(d*x + c))) + 2*(2*C*cos(d*x 
 + c) + A + 3*C)*sqrt(a*cos(d*x + c) + a)*sqrt(cos(d*x + c))*sin(d*x + c) 
- 12*(C*cos(d*x + c)^2 + 2*C*cos(d*x + c) + C)*sqrt(a)*arctan(sqrt(a*cos(d 
*x + c) + a)*sqrt(a)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 + a 
*cos(d*x + c))))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)
 

Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {\left (A + C \cos ^{2}{\left (c + d x \right )}\right ) \sqrt {\cos {\left (c + d x \right )}}}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(cos(d*x+c)**(1/2)*(A+C*cos(d*x+c)**2)/(a+a*cos(d*x+c))**(3/2),x)
 

Output:

Integral((A + C*cos(c + d*x)**2)*sqrt(cos(c + d*x))/(a*(cos(c + d*x) + 1)) 
**(3/2), x)
 

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^{3/2}} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + A\right )} \sqrt {\cos \left (d x + c\right )}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x, al 
gorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)*sqrt(cos(d*x + c))/(a*cos(d*x + c) + a)^( 
3/2), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)^(1/2)*(A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x, al 
gorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (C\,{\cos \left (c+d\,x\right )}^2+A\right )}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int((cos(c + d*x)^(1/2)*(A + C*cos(c + d*x)^2))/(a + a*cos(c + d*x))^(3/2) 
,x)
 

Output:

int((cos(c + d*x)^(1/2)*(A + C*cos(c + d*x)^2))/(a + a*cos(c + d*x))^(3/2) 
, x)
 

Reduce [F]

\[ \int \frac {\sqrt {\cos (c+d x)} \left (A+C \cos ^2(c+d x)\right )}{(a+a \cos (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{2}}{\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1}d x \right ) c +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1}d x \right ) a \right )}{a^{2}} \] Input:

int(cos(d*x+c)^(1/2)*(A+C*cos(d*x+c)^2)/(a+a*cos(d*x+c))^(3/2),x)
 

Output:

(sqrt(a)*(int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c + d*x)**2)/ 
(cos(c + d*x)**2 + 2*cos(c + d*x) + 1),x)*c + int((sqrt(cos(c + d*x) + 1)* 
sqrt(cos(c + d*x)))/(cos(c + d*x)**2 + 2*cos(c + d*x) + 1),x)*a))/a**2