\(\int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx\) [207]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 145 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx=\frac {2 C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a+a \cos (c+d x)}}\right )}{a^{3/2} d}+\frac {(3 A-5 C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A+C) \sqrt {\cos (c+d x)} \sin (c+d x)}{2 d (a+a \cos (c+d x))^{3/2}} \] Output:

2*C*arcsin(a^(1/2)*sin(d*x+c)/(a+a*cos(d*x+c))^(1/2))/a^(3/2)/d+1/4*(3*A-5 
*C)*arctan(1/2*a^(1/2)*sin(d*x+c)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c) 
)^(1/2))*2^(1/2)/a^(3/2)/d-1/2*(A+C)*cos(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*co 
s(d*x+c))^(3/2)
 

Mathematica [A] (warning: unable to verify)

Time = 0.92 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.18 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx=-\frac {\left (C \arcsin \left (\sqrt {1-\cos (c+d x)}\right ) (1+\cos (c+d x))+5 C \arcsin \left (\sqrt {\cos (c+d x)}\right ) (1+\cos (c+d x))+\sqrt {2} \left ((3 A-5 C) \arctan \left (\frac {\sqrt {\cos (c+d x)}}{\sqrt {\sin ^2\left (\frac {1}{2} (c+d x)\right )}}\right ) \cos ^2\left (\frac {1}{2} (c+d x)\right )+(A+C) \sqrt {\cos (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )}\right )\right ) \sin (c+d x)}{2 d \sqrt {1-\cos (c+d x)} (a (1+\cos (c+d x)))^{3/2}} \] Input:

Integrate[(A + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^ 
(3/2)),x]
 

Output:

-1/2*((C*ArcSin[Sqrt[1 - Cos[c + d*x]]]*(1 + Cos[c + d*x]) + 5*C*ArcSin[Sq 
rt[Cos[c + d*x]]]*(1 + Cos[c + d*x]) + Sqrt[2]*((3*A - 5*C)*ArcTan[Sqrt[Co 
s[c + d*x]]/Sqrt[Sin[(c + d*x)/2]^2]]*Cos[(c + d*x)/2]^2 + (A + C)*Sqrt[Co 
s[c + d*x]*Sin[(c + d*x)/2]^2]))*Sin[c + d*x])/(d*Sqrt[1 - Cos[c + d*x]]*( 
a*(1 + Cos[c + d*x]))^(3/2))
 

Rubi [A] (verified)

Time = 0.85 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.03, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.270, Rules used = {3042, 3521, 27, 3042, 3461, 3042, 3253, 223, 3261, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a \cos (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a \sin \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 3521

\(\displaystyle \frac {\int \frac {a (3 A-C)+4 a C \cos (c+d x)}{2 \sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{2 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {a (3 A-C)+4 a C \cos (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {a (3 A-C)+4 a C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3461

\(\displaystyle \frac {a (3 A-5 C) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}dx+4 C \int \frac {\sqrt {\cos (c+d x) a+a}}{\sqrt {\cos (c+d x)}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a (3 A-5 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+4 C \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{4 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3253

\(\displaystyle \frac {a (3 A-5 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {8 C \int \frac {1}{\sqrt {1-\frac {a \sin ^2(c+d x)}{\cos (c+d x) a+a}}}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x) a+a}}\right )}{d}}{4 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 223

\(\displaystyle \frac {a (3 A-5 C) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {8 \sqrt {a} C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3261

\(\displaystyle \frac {\frac {8 \sqrt {a} C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}-\frac {2 a^2 (3 A-5 C) \int \frac {1}{\frac {\sin (c+d x) \tan (c+d x) a^3}{\cos (c+d x) a+a}+2 a^2}d\left (-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {\cos (c+d x) a+a}}\right )}{d}}{4 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\sqrt {2} \sqrt {a} (3 A-5 C) \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{d}+\frac {8 \sqrt {a} C \arcsin \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {a \cos (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A+C) \sin (c+d x) \sqrt {\cos (c+d x)}}{2 d (a \cos (c+d x)+a)^{3/2}}\)

Input:

Int[(A + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^(3/2)) 
,x]
 

Output:

((8*Sqrt[a]*C*ArcSin[(Sqrt[a]*Sin[c + d*x])/Sqrt[a + a*Cos[c + d*x]]])/d + 
 (Sqrt[2]*Sqrt[a]*(3*A - 5*C)*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[ 
Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])])/d)/(4*a^2) - ((A + C)*Sqrt[Cos[c 
 + d*x]]*Sin[c + d*x])/(2*d*(a + a*Cos[c + d*x])^(3/2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 223
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt 
[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3253
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.) 
*(x_)]], x_Symbol] :> Simp[-2/f   Subst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Co 
s[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x] && E 
qQ[a^2 - b^2, 0] && EqQ[d, a/b]
 

rule 3261
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e 
_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(a/f)   Subst[Int[1/(2*b^2 - (a*c 
 - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*S 
in[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && 
 EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3461
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Sim 
p[(A*b - a*B)/b   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]) 
, x], x] + Simp[B/b   Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]] 
, x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[ 
a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3521
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
 + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1))   I 
nt[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) 
- b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n + 2) + C*(b* 
c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, 
 d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 
 - d^2, 0] && LtQ[m, -2^(-1)]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(263\) vs. \(2(120)=240\).

Time = 2.98 (sec) , antiderivative size = 264, normalized size of antiderivative = 1.82

method result size
default \(\frac {\sqrt {2}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\frac {A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (-\sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )-3 \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )\right )}{\sqrt {\cos \left (d x +c \right )}}-\frac {C \sqrt {\cos \left (d x +c \right )}\, \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right )^{2} \left (1+\cos \left (d x +c \right )\right ) \left (-4 \sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )+\sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )-5 \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )\right )}{4 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )}{4 d \,a^{2}}\) \(264\)
parts \(-\frac {A \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (\sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )+3 \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )\right )}{4 d \,a^{2} \sqrt {\cos \left (d x +c \right )}}-\frac {C \sqrt {\cos \left (d x +c \right )}\, \left (1+\cos \left (d x +c \right )\right ) \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right )^{2} \sqrt {2}\, \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \left (-4 \sqrt {2}\, \arctan \left (\sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \tan \left (d x +c \right )\right )+\sqrt {2}\, \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )-5 \arcsin \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )\right )}{16 d \,a^{2} \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\) \(283\)

Input:

int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x,method=_R 
ETURNVERBOSE)
 

Output:

1/4/d/a^2*2^(1/2)*(a*(1+cos(d*x+c)))^(1/2)*(A/cos(d*x+c)^(1/2)*(cos(d*x+c) 
/(1+cos(d*x+c)))^(1/2)*(-2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(csc(d* 
x+c)-cot(d*x+c))-3*arcsin(-csc(d*x+c)+cot(d*x+c)))-1/4*C*cos(d*x+c)^(1/2)* 
((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^2*(1+cos(d*x+c))/(cos(d*x+c)/(1+cos(d*x+ 
c)))^(1/2)*(-4*2^(1/2)*arctan((cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*tan(d*x+c) 
)+2^(1/2)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(csc(d*x+c)-cot(d*x+c))-5*arcs 
in(-csc(d*x+c)+cot(d*x+c))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 246 vs. \(2 (120) = 240\).

Time = 2.74 (sec) , antiderivative size = 246, normalized size of antiderivative = 1.70 \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx=\frac {\sqrt {2} {\left ({\left (3 \, A - 5 \, C\right )} \cos \left (d x + c\right )^{2} + 2 \, {\left (3 \, A - 5 \, C\right )} \cos \left (d x + c\right ) + 3 \, A - 5 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, {\left (a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )\right )}}\right ) - 2 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (A + C\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) + 8 \, {\left (C \cos \left (d x + c\right )^{2} + 2 \, C \cos \left (d x + c\right ) + C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {a \cos \left (d x + c\right ) + a} \sqrt {a} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right )}\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}} \] Input:

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, al 
gorithm="fricas")
 

Output:

1/4*(sqrt(2)*((3*A - 5*C)*cos(d*x + c)^2 + 2*(3*A - 5*C)*cos(d*x + c) + 3* 
A - 5*C)*sqrt(a)*arctan(1/2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sqrt(a)*sqrt( 
cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 + a*cos(d*x + c))) - 2*sqrt(a 
*cos(d*x + c) + a)*(A + C)*sqrt(cos(d*x + c))*sin(d*x + c) + 8*(C*cos(d*x 
+ c)^2 + 2*C*cos(d*x + c) + C)*sqrt(a)*arctan(sqrt(a*cos(d*x + c) + a)*sqr 
t(a)*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 + a*cos(d*x + c)))) 
/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)
 

Sympy [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {A + C \cos ^{2}{\left (c + d x \right )}}{\left (a \left (\cos {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \sqrt {\cos {\left (c + d x \right )}}}\, dx \] Input:

integrate((A+C*cos(d*x+c)**2)/cos(d*x+c)**(1/2)/(a+a*cos(d*x+c))**(3/2),x)
 

Output:

Integral((A + C*cos(c + d*x)**2)/((a*(cos(c + d*x) + 1))**(3/2)*sqrt(cos(c 
 + d*x))), x)
 

Maxima [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + A}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {3}{2}} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, al 
gorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + A)/((a*cos(d*x + c) + a)^(3/2)*sqrt(cos(d*x 
+ c))), x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate((A+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x, al 
gorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+A}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \] Input:

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^(3/2)) 
,x)
 

Output:

int((A + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(a + a*cos(c + d*x))^(3/2)) 
, x)
 

Reduce [F]

\[ \int \frac {A+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )}{\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1}d x \right ) c +\left (\int \frac {\sqrt {\cos \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{3}+2 \cos \left (d x +c \right )^{2}+\cos \left (d x +c \right )}d x \right ) a \right )}{a^{2}} \] Input:

int((A+C*cos(d*x+c)^2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(3/2),x)
 

Output:

(sqrt(a)*(int((sqrt(cos(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c + d*x))/(co 
s(c + d*x)**2 + 2*cos(c + d*x) + 1),x)*c + int((sqrt(cos(c + d*x) + 1)*sqr 
t(cos(c + d*x)))/(cos(c + d*x)**3 + 2*cos(c + d*x)**2 + cos(c + d*x)),x)*a 
))/a**2