\(\int (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^4(c+d x) \, dx\) [298]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 78 \[ \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {B \text {arctanh}(\sin (c+d x))}{2 d}+\frac {(2 A+3 C) \tan (c+d x)}{3 d}+\frac {B \sec (c+d x) \tan (c+d x)}{2 d}+\frac {A \sec ^2(c+d x) \tan (c+d x)}{3 d} \] Output:

1/2*B*arctanh(sin(d*x+c))/d+1/3*(2*A+3*C)*tan(d*x+c)/d+1/2*B*sec(d*x+c)*ta 
n(d*x+c)/d+1/3*A*sec(d*x+c)^2*tan(d*x+c)/d
 

Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.65 \[ \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {3 B \text {arctanh}(\sin (c+d x))+\tan (c+d x) \left (6 (A+C)+3 B \sec (c+d x)+2 A \tan ^2(c+d x)\right )}{6 d} \] Input:

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]
 

Output:

(3*B*ArcTanh[Sin[c + d*x]] + Tan[c + d*x]*(6*(A + C) + 3*B*Sec[c + d*x] + 
2*A*Tan[c + d*x]^2))/(6*d)
 

Rubi [A] (verified)

Time = 0.54 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.05, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.345, Rules used = {3042, 3500, 3042, 3227, 3042, 4254, 24, 4255, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^4(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^4}dx\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {1}{3} \int (3 B+(2 A+3 C) \cos (c+d x)) \sec ^3(c+d x)dx+\frac {A \tan (c+d x) \sec ^2(c+d x)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {3 B+(2 A+3 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^3}dx+\frac {A \tan (c+d x) \sec ^2(c+d x)}{3 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{3} \left ((2 A+3 C) \int \sec ^2(c+d x)dx+3 B \int \sec ^3(c+d x)dx\right )+\frac {A \tan (c+d x) \sec ^2(c+d x)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left ((2 A+3 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^2dx+3 B \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx\right )+\frac {A \tan (c+d x) \sec ^2(c+d x)}{3 d}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {1}{3} \left (3 B \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx-\frac {(2 A+3 C) \int 1d(-\tan (c+d x))}{d}\right )+\frac {A \tan (c+d x) \sec ^2(c+d x)}{3 d}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {1}{3} \left (3 B \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx+\frac {(2 A+3 C) \tan (c+d x)}{d}\right )+\frac {A \tan (c+d x) \sec ^2(c+d x)}{3 d}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {1}{3} \left (3 B \left (\frac {1}{2} \int \sec (c+d x)dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {(2 A+3 C) \tan (c+d x)}{d}\right )+\frac {A \tan (c+d x) \sec ^2(c+d x)}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (3 B \left (\frac {1}{2} \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )+\frac {(2 A+3 C) \tan (c+d x)}{d}\right )+\frac {A \tan (c+d x) \sec ^2(c+d x)}{3 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {1}{3} \left (\frac {(2 A+3 C) \tan (c+d x)}{d}+3 B \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )\right )+\frac {A \tan (c+d x) \sec ^2(c+d x)}{3 d}\)

Input:

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^4,x]
 

Output:

(A*Sec[c + d*x]^2*Tan[c + d*x])/(3*d) + (((2*A + 3*C)*Tan[c + d*x])/d + 3* 
B*(ArcTanh[Sin[c + d*x]]/(2*d) + (Sec[c + d*x]*Tan[c + d*x])/(2*d)))/3
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 0.75 (sec) , antiderivative size = 68, normalized size of antiderivative = 0.87

method result size
derivativedivides \(\frac {-A \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+B \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+C \tan \left (d x +c \right )}{d}\) \(68\)
default \(\frac {-A \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+B \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+C \tan \left (d x +c \right )}{d}\) \(68\)
parts \(-\frac {A \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}+\frac {B \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}+\frac {C \tan \left (d x +c \right )}{d}\) \(73\)
risch \(-\frac {i \left (3 B \,{\mathrm e}^{5 i \left (d x +c \right )}-6 C \,{\mathrm e}^{4 i \left (d x +c \right )}-12 A \,{\mathrm e}^{2 i \left (d x +c \right )}-12 C \,{\mathrm e}^{2 i \left (d x +c \right )}-3 B \,{\mathrm e}^{i \left (d x +c \right )}-4 A -6 C \right )}{3 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{3}}+\frac {B \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}-\frac {B \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}\) \(126\)
parallelrisch \(\frac {-9 \left (\frac {\cos \left (3 d x +3 c \right )}{3}+\cos \left (d x +c \right )\right ) B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+9 \left (\frac {\cos \left (3 d x +3 c \right )}{3}+\cos \left (d x +c \right )\right ) B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+\left (4 A +6 C \right ) \sin \left (3 d x +3 c \right )+6 B \sin \left (2 d x +2 c \right )+12 \left (A +\frac {C}{2}\right ) \sin \left (d x +c \right )}{6 d \left (\cos \left (3 d x +3 c \right )+3 \cos \left (d x +c \right )\right )}\) \(135\)
norman \(\frac {-\frac {4 \left (A -3 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{3 d}-\frac {2 \left (4 A -3 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{3 d}-\frac {2 \left (4 A +3 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{3 d}-\frac {\left (2 A -B +2 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{d}-\frac {\left (2 A +B +2 C \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{3}}-\frac {B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {B \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(185\)

Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x,method=_RETURNVERBOSE)
 

Output:

1/d*(-A*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)+B*(1/2*sec(d*x+c)*tan(d*x+c)+1/ 
2*ln(sec(d*x+c)+tan(d*x+c)))+C*tan(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 94, normalized size of antiderivative = 1.21 \[ \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {3 \, B \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, B \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (2 \, {\left (2 \, A + 3 \, C\right )} \cos \left (d x + c\right )^{2} + 3 \, B \cos \left (d x + c\right ) + 2 \, A\right )} \sin \left (d x + c\right )}{12 \, d \cos \left (d x + c\right )^{3}} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="frica 
s")
 

Output:

1/12*(3*B*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*B*cos(d*x + c)^3*log(-s 
in(d*x + c) + 1) + 2*(2*(2*A + 3*C)*cos(d*x + c)^2 + 3*B*cos(d*x + c) + 2* 
A)*sin(d*x + c))/(d*cos(d*x + c)^3)
 

Sympy [F]

\[ \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\int \left (A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}\right ) \sec ^{4}{\left (c + d x \right )}\, dx \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**4,x)
 

Output:

Integral((A + B*cos(c + d*x) + C*cos(c + d*x)**2)*sec(c + d*x)**4, x)
 

Maxima [A] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 79, normalized size of antiderivative = 1.01 \[ \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {4 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} A - 3 \, B {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 12 \, C \tan \left (d x + c\right )}{12 \, d} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="maxim 
a")
 

Output:

1/12*(4*(tan(d*x + c)^3 + 3*tan(d*x + c))*A - 3*B*(2*sin(d*x + c)/(sin(d*x 
 + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 12*C*tan(d 
*x + c))/d
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 162 vs. \(2 (70) = 140\).

Time = 0.13 (sec) , antiderivative size = 162, normalized size of antiderivative = 2.08 \[ \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {3 \, B \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, B \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) - \frac {2 \, {\left (6 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 3 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 6 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 4 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 12 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 6 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 3 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 6 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{3}}}{6 \, d} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x, algorithm="giac" 
)
 

Output:

1/6*(3*B*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*B*log(abs(tan(1/2*d*x + 1/ 
2*c) - 1)) - 2*(6*A*tan(1/2*d*x + 1/2*c)^5 - 3*B*tan(1/2*d*x + 1/2*c)^5 + 
6*C*tan(1/2*d*x + 1/2*c)^5 - 4*A*tan(1/2*d*x + 1/2*c)^3 - 12*C*tan(1/2*d*x 
 + 1/2*c)^3 + 6*A*tan(1/2*d*x + 1/2*c) + 3*B*tan(1/2*d*x + 1/2*c) + 6*C*ta 
n(1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d
 

Mupad [B] (verification not implemented)

Time = 1.46 (sec) , antiderivative size = 123, normalized size of antiderivative = 1.58 \[ \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {B\,\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )}{d}-\frac {\left (2\,A-B+2\,C\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (-\frac {4\,A}{3}-4\,C\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (2\,A+B+2\,C\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6-3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+3\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2-1\right )} \] Input:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/cos(c + d*x)^4,x)
 

Output:

(B*atanh(tan(c/2 + (d*x)/2)))/d - (tan(c/2 + (d*x)/2)*(2*A + B + 2*C) - ta 
n(c/2 + (d*x)/2)^3*((4*A)/3 + 4*C) + tan(c/2 + (d*x)/2)^5*(2*A - B + 2*C)) 
/(d*(3*tan(c/2 + (d*x)/2)^2 - 3*tan(c/2 + (d*x)/2)^4 + tan(c/2 + (d*x)/2)^ 
6 - 1))
 

Reduce [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 181, normalized size of antiderivative = 2.32 \[ \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^4(c+d x) \, dx=\frac {-3 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} b +3 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) b +3 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} b -3 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) b -3 \cos \left (d x +c \right ) \sin \left (d x +c \right ) b +4 \sin \left (d x +c \right )^{3} a +6 \sin \left (d x +c \right )^{3} c -6 \sin \left (d x +c \right ) a -6 \sin \left (d x +c \right ) c}{6 \cos \left (d x +c \right ) d \left (\sin \left (d x +c \right )^{2}-1\right )} \] Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^4,x)
 

Output:

( - 3*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**2*b + 3*cos(c + 
 d*x)*log(tan((c + d*x)/2) - 1)*b + 3*cos(c + d*x)*log(tan((c + d*x)/2) + 
1)*sin(c + d*x)**2*b - 3*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*b - 3*cos( 
c + d*x)*sin(c + d*x)*b + 4*sin(c + d*x)**3*a + 6*sin(c + d*x)**3*c - 6*si 
n(c + d*x)*a - 6*sin(c + d*x)*c)/(6*cos(c + d*x)*d*(sin(c + d*x)**2 - 1))