\(\int (A+B \cos (c+d x)+C \cos ^2(c+d x)) \sec ^5(c+d x) \, dx\) [299]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [A] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 97 \[ \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {(3 A+4 C) \text {arctanh}(\sin (c+d x))}{8 d}+\frac {B \tan (c+d x)}{d}+\frac {(3 A+4 C) \sec (c+d x) \tan (c+d x)}{8 d}+\frac {A \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac {B \tan ^3(c+d x)}{3 d} \] Output:

1/8*(3*A+4*C)*arctanh(sin(d*x+c))/d+B*tan(d*x+c)/d+1/8*(3*A+4*C)*sec(d*x+c 
)*tan(d*x+c)/d+1/4*A*sec(d*x+c)^3*tan(d*x+c)/d+1/3*B*tan(d*x+c)^3/d
 

Mathematica [A] (verified)

Time = 0.28 (sec) , antiderivative size = 71, normalized size of antiderivative = 0.73 \[ \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {3 (3 A+4 C) \text {arctanh}(\sin (c+d x))+\tan (c+d x) \left (3 (3 A+4 C) \sec (c+d x)+6 A \sec ^3(c+d x)+8 B \left (3+\tan ^2(c+d x)\right )\right )}{24 d} \] Input:

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]
 

Output:

(3*(3*A + 4*C)*ArcTanh[Sin[c + d*x]] + Tan[c + d*x]*(3*(3*A + 4*C)*Sec[c + 
 d*x] + 6*A*Sec[c + d*x]^3 + 8*B*(3 + Tan[c + d*x]^2)))/(24*d)
 

Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.345, Rules used = {3042, 3500, 3042, 3227, 3042, 4254, 2009, 4255, 3042, 4257}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sec ^5(c+d x) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^5}dx\)

\(\Big \downarrow \) 3500

\(\displaystyle \frac {1}{4} \int (4 B+(3 A+4 C) \cos (c+d x)) \sec ^4(c+d x)dx+\frac {A \tan (c+d x) \sec ^3(c+d x)}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \int \frac {4 B+(3 A+4 C) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^4}dx+\frac {A \tan (c+d x) \sec ^3(c+d x)}{4 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{4} \left ((3 A+4 C) \int \sec ^3(c+d x)dx+4 B \int \sec ^4(c+d x)dx\right )+\frac {A \tan (c+d x) \sec ^3(c+d x)}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left ((3 A+4 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx+4 B \int \csc \left (c+d x+\frac {\pi }{2}\right )^4dx\right )+\frac {A \tan (c+d x) \sec ^3(c+d x)}{4 d}\)

\(\Big \downarrow \) 4254

\(\displaystyle \frac {1}{4} \left ((3 A+4 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx-\frac {4 B \int \left (\tan ^2(c+d x)+1\right )d(-\tan (c+d x))}{d}\right )+\frac {A \tan (c+d x) \sec ^3(c+d x)}{4 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{4} \left ((3 A+4 C) \int \csc \left (c+d x+\frac {\pi }{2}\right )^3dx-\frac {4 B \left (-\frac {1}{3} \tan ^3(c+d x)-\tan (c+d x)\right )}{d}\right )+\frac {A \tan (c+d x) \sec ^3(c+d x)}{4 d}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {1}{4} \left ((3 A+4 C) \left (\frac {1}{2} \int \sec (c+d x)dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )-\frac {4 B \left (-\frac {1}{3} \tan ^3(c+d x)-\tan (c+d x)\right )}{d}\right )+\frac {A \tan (c+d x) \sec ^3(c+d x)}{4 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left ((3 A+4 C) \left (\frac {1}{2} \int \csc \left (c+d x+\frac {\pi }{2}\right )dx+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )-\frac {4 B \left (-\frac {1}{3} \tan ^3(c+d x)-\tan (c+d x)\right )}{d}\right )+\frac {A \tan (c+d x) \sec ^3(c+d x)}{4 d}\)

\(\Big \downarrow \) 4257

\(\displaystyle \frac {1}{4} \left ((3 A+4 C) \left (\frac {\text {arctanh}(\sin (c+d x))}{2 d}+\frac {\tan (c+d x) \sec (c+d x)}{2 d}\right )-\frac {4 B \left (-\frac {1}{3} \tan ^3(c+d x)-\tan (c+d x)\right )}{d}\right )+\frac {A \tan (c+d x) \sec ^3(c+d x)}{4 d}\)

Input:

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)*Sec[c + d*x]^5,x]
 

Output:

(A*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + ((3*A + 4*C)*(ArcTanh[Sin[c + d*x] 
]/(2*d) + (Sec[c + d*x]*Tan[c + d*x])/(2*d)) - (4*B*(-Tan[c + d*x] - Tan[c 
 + d*x]^3/3))/d)/4
 

Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3500
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 
 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)* 
(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A 
*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, 
B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
 

rule 4254
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
andIntegrand[(1 + x^2)^(n/2 - 1), x], x], x, Cot[c + d*x]], x] /; FreeQ[{c, 
 d}, x] && IGtQ[n/2, 0]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4257
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] 
 /; FreeQ[{c, d}, x]
 
Maple [A] (verified)

Time = 0.89 (sec) , antiderivative size = 106, normalized size of antiderivative = 1.09

method result size
derivativedivides \(\frac {A \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )-B \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+C \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}\) \(106\)
default \(\frac {A \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )-B \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )+C \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}\) \(106\)
parts \(\frac {A \left (-\left (-\frac {\sec \left (d x +c \right )^{3}}{4}-\frac {3 \sec \left (d x +c \right )}{8}\right ) \tan \left (d x +c \right )+\frac {3 \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{8}\right )}{d}-\frac {B \left (-\frac {2}{3}-\frac {\sec \left (d x +c \right )^{2}}{3}\right ) \tan \left (d x +c \right )}{d}+\frac {C \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )}{d}\) \(111\)
parallelrisch \(\frac {-36 \left (A +\frac {4 C}{3}\right ) \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )+36 \left (A +\frac {4 C}{3}\right ) \left (\frac {3}{4}+\frac {\cos \left (4 d x +4 c \right )}{4}+\cos \left (2 d x +2 c \right )\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )+\left (18 A +24 C \right ) \sin \left (3 d x +3 c \right )+64 B \sin \left (2 d x +2 c \right )+16 B \sin \left (4 d x +4 c \right )+66 \sin \left (d x +c \right ) \left (A +\frac {4 C}{11}\right )}{24 d \left (\cos \left (4 d x +4 c \right )+4 \cos \left (2 d x +2 c \right )+3\right )}\) \(167\)
risch \(-\frac {i \left (9 A \,{\mathrm e}^{7 i \left (d x +c \right )}+12 C \,{\mathrm e}^{7 i \left (d x +c \right )}+33 A \,{\mathrm e}^{5 i \left (d x +c \right )}+12 C \,{\mathrm e}^{5 i \left (d x +c \right )}-48 B \,{\mathrm e}^{4 i \left (d x +c \right )}-33 A \,{\mathrm e}^{3 i \left (d x +c \right )}-12 C \,{\mathrm e}^{3 i \left (d x +c \right )}-64 B \,{\mathrm e}^{2 i \left (d x +c \right )}-9 A \,{\mathrm e}^{i \left (d x +c \right )}-12 C \,{\mathrm e}^{i \left (d x +c \right )}-16 B \right )}{12 d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{4}}+\frac {3 A \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{8 d}+\frac {C \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}-\frac {3 A \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{8 d}-\frac {C \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}\) \(221\)
norman \(\frac {\frac {\left (5 A +4 C -8 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{11}}{4 d}+\frac {\left (5 A +4 C +8 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}+\frac {\left (21 A -12 C -8 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{6 d}+\frac {\left (21 A -12 C +8 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{6 d}+\frac {\left (39 A +12 C -8 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{12 d}+\frac {\left (39 A +12 C +8 B \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{12 d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{2} \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}-1\right )^{4}}-\frac {\left (3 A +4 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{8 d}+\frac {\left (3 A +4 C \right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{8 d}\) \(236\)

Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x,method=_RETURNVERBOSE)
 

Output:

1/d*(A*(-(-1/4*sec(d*x+c)^3-3/8*sec(d*x+c))*tan(d*x+c)+3/8*ln(sec(d*x+c)+t 
an(d*x+c)))-B*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)+C*(1/2*sec(d*x+c)*tan(d*x 
+c)+1/2*ln(sec(d*x+c)+tan(d*x+c))))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.21 \[ \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {3 \, {\left (3 \, A + 4 \, C\right )} \cos \left (d x + c\right )^{4} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \, {\left (3 \, A + 4 \, C\right )} \cos \left (d x + c\right )^{4} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (16 \, B \cos \left (d x + c\right )^{3} + 3 \, {\left (3 \, A + 4 \, C\right )} \cos \left (d x + c\right )^{2} + 8 \, B \cos \left (d x + c\right ) + 6 \, A\right )} \sin \left (d x + c\right )}{48 \, d \cos \left (d x + c\right )^{4}} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="frica 
s")
 

Output:

1/48*(3*(3*A + 4*C)*cos(d*x + c)^4*log(sin(d*x + c) + 1) - 3*(3*A + 4*C)*c 
os(d*x + c)^4*log(-sin(d*x + c) + 1) + 2*(16*B*cos(d*x + c)^3 + 3*(3*A + 4 
*C)*cos(d*x + c)^2 + 8*B*cos(d*x + c) + 6*A)*sin(d*x + c))/(d*cos(d*x + c) 
^4)
 

Sympy [F]

\[ \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\int \left (A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}\right ) \sec ^{5}{\left (c + d x \right )}\, dx \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)*sec(d*x+c)**5,x)
 

Output:

Integral((A + B*cos(c + d*x) + C*cos(c + d*x)**2)*sec(c + d*x)**5, x)
 

Maxima [A] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 139, normalized size of antiderivative = 1.43 \[ \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {16 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} B - 3 \, A {\left (\frac {2 \, {\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 12 \, C {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )}}{48 \, d} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="maxim 
a")
 

Output:

1/48*(16*(tan(d*x + c)^3 + 3*tan(d*x + c))*B - 3*A*(2*(3*sin(d*x + c)^3 - 
5*sin(d*x + c))/(sin(d*x + c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + 
c) + 1) + 3*log(sin(d*x + c) - 1)) - 12*C*(2*sin(d*x + c)/(sin(d*x + c)^2 
- 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)))/d
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 230 vs. \(2 (89) = 178\).

Time = 0.17 (sec) , antiderivative size = 230, normalized size of antiderivative = 2.37 \[ \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {3 \, {\left (3 \, A + 4 \, C\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - 3 \, {\left (3 \, A + 4 \, C\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {2 \, {\left (15 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} - 24 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 12 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{7} + 9 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 40 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} - 12 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{5} + 9 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 40 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 12 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + 15 \, A \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 24 \, B \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 12 \, C \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{4}}}{24 \, d} \] Input:

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x, algorithm="giac" 
)
 

Output:

1/24*(3*(3*A + 4*C)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(3*A + 4*C)*log 
(abs(tan(1/2*d*x + 1/2*c) - 1)) + 2*(15*A*tan(1/2*d*x + 1/2*c)^7 - 24*B*ta 
n(1/2*d*x + 1/2*c)^7 + 12*C*tan(1/2*d*x + 1/2*c)^7 + 9*A*tan(1/2*d*x + 1/2 
*c)^5 + 40*B*tan(1/2*d*x + 1/2*c)^5 - 12*C*tan(1/2*d*x + 1/2*c)^5 + 9*A*ta 
n(1/2*d*x + 1/2*c)^3 - 40*B*tan(1/2*d*x + 1/2*c)^3 - 12*C*tan(1/2*d*x + 1/ 
2*c)^3 + 15*A*tan(1/2*d*x + 1/2*c) + 24*B*tan(1/2*d*x + 1/2*c) + 12*C*tan( 
1/2*d*x + 1/2*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^4)/d
 

Mupad [B] (verification not implemented)

Time = 1.79 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.65 \[ \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (\frac {3\,A}{4}+C\right )}{d}+\frac {\left (\frac {5\,A}{4}-2\,B+C\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (\frac {3\,A}{4}+\frac {10\,B}{3}-C\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (\frac {3\,A}{4}-\frac {10\,B}{3}-C\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (\frac {5\,A}{4}+2\,B+C\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+6\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-4\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )} \] Input:

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/cos(c + d*x)^5,x)
 

Output:

(atanh(tan(c/2 + (d*x)/2))*((3*A)/4 + C))/d + (tan(c/2 + (d*x)/2)*((5*A)/4 
 + 2*B + C) + tan(c/2 + (d*x)/2)^7*((5*A)/4 - 2*B + C) - tan(c/2 + (d*x)/2 
)^3*((10*B)/3 - (3*A)/4 + C) + tan(c/2 + (d*x)/2)^5*((3*A)/4 + (10*B)/3 - 
C))/(d*(6*tan(c/2 + (d*x)/2)^4 - 4*tan(c/2 + (d*x)/2)^2 - 4*tan(c/2 + (d*x 
)/2)^6 + tan(c/2 + (d*x)/2)^8 + 1))
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 447, normalized size of antiderivative = 4.61 \[ \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^5(c+d x) \, dx=\frac {-9 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{4} a -12 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{4} c +18 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} a +24 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) \sin \left (d x +c \right )^{2} c -9 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) a -12 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right ) c +9 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{4} a +12 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{4} c -18 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} a -24 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) \sin \left (d x +c \right )^{2} c +9 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) a +12 \cos \left (d x +c \right ) \mathrm {log}\left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right ) c -9 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3} a -12 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3} c +15 \cos \left (d x +c \right ) \sin \left (d x +c \right ) a +12 \cos \left (d x +c \right ) \sin \left (d x +c \right ) c +16 \sin \left (d x +c \right )^{5} b -40 \sin \left (d x +c \right )^{3} b +24 \sin \left (d x +c \right ) b}{24 \cos \left (d x +c \right ) d \left (\sin \left (d x +c \right )^{4}-2 \sin \left (d x +c \right )^{2}+1\right )} \] Input:

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)*sec(d*x+c)^5,x)
 

Output:

( - 9*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**4*a - 12*cos(c 
+ d*x)*log(tan((c + d*x)/2) - 1)*sin(c + d*x)**4*c + 18*cos(c + d*x)*log(t 
an((c + d*x)/2) - 1)*sin(c + d*x)**2*a + 24*cos(c + d*x)*log(tan((c + d*x) 
/2) - 1)*sin(c + d*x)**2*c - 9*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*a - 
12*cos(c + d*x)*log(tan((c + d*x)/2) - 1)*c + 9*cos(c + d*x)*log(tan((c + 
d*x)/2) + 1)*sin(c + d*x)**4*a + 12*cos(c + d*x)*log(tan((c + d*x)/2) + 1) 
*sin(c + d*x)**4*c - 18*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x 
)**2*a - 24*cos(c + d*x)*log(tan((c + d*x)/2) + 1)*sin(c + d*x)**2*c + 9*c 
os(c + d*x)*log(tan((c + d*x)/2) + 1)*a + 12*cos(c + d*x)*log(tan((c + d*x 
)/2) + 1)*c - 9*cos(c + d*x)*sin(c + d*x)**3*a - 12*cos(c + d*x)*sin(c + d 
*x)**3*c + 15*cos(c + d*x)*sin(c + d*x)*a + 12*cos(c + d*x)*sin(c + d*x)*c 
 + 16*sin(c + d*x)**5*b - 40*sin(c + d*x)**3*b + 24*sin(c + d*x)*b)/(24*co 
s(c + d*x)*d*(sin(c + d*x)**4 - 2*sin(c + d*x)**2 + 1))