\(\int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx\) [937]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [F]
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 44, antiderivative size = 456 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\frac {2 \left (3 a^4 B-15 a^2 b^2 B+8 b^4 B+6 a^3 b C-2 a b^3 C\right ) \cot (c+d x) E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^4 (a-b) (a+b)^{3/2} d}+\frac {2 \left (8 b^3 B-3 a^3 (B-C)+2 a b^2 (3 B-C)-3 a^2 b (3 B+C)\right ) \cot (c+d x) \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right ) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (1+\sec (c+d x))}{a-b}}}{3 a^3 \sqrt {a+b} \left (a^2-b^2\right ) d}+\frac {2 b (b B-a C) \sin (c+d x)}{3 a \left (a^2-b^2\right ) d \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}+\frac {2 b \left (8 a^2 b B-4 b^3 B-5 a^3 C+a b^2 C\right ) \sin (c+d x)}{3 a^2 \left (a^2-b^2\right )^2 d \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}} \] Output:

2/3*(3*B*a^4-15*B*a^2*b^2+8*B*b^4+6*C*a^3*b-2*C*a*b^3)*cot(d*x+c)*Elliptic 
E((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-(a+b)/(a-b))^(1/2) 
)*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b))^(1/2)/a^4/(a-b)/ 
(a+b)^(3/2)/d+2/3*(8*B*b^3-3*a^3*(B-C)+2*a*b^2*(3*B-C)-3*a^2*b*(3*B+C))*co 
t(d*x+c)*EllipticF((a+b*cos(d*x+c))^(1/2)/(a+b)^(1/2)/cos(d*x+c)^(1/2),(-( 
a+b)/(a-b))^(1/2))*(a*(1-sec(d*x+c))/(a+b))^(1/2)*(a*(1+sec(d*x+c))/(a-b)) 
^(1/2)/a^3/(a+b)^(1/2)/(a^2-b^2)/d+2/3*b*(B*b-C*a)*sin(d*x+c)/a/(a^2-b^2)/ 
d/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^(3/2)+2/3*b*(8*B*a^2*b-4*B*b^3-5*C*a^3 
+C*a*b^2)*sin(d*x+c)/a^2/(a^2-b^2)^2/d/cos(d*x+c)^(1/2)/(a+b*cos(d*x+c))^( 
1/2)
                                                                                    
                                                                                    
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 7.29 (sec) , antiderivative size = 1431, normalized size of antiderivative = 3.14 \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx =\text {Too large to display} \] Input:

Integrate[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(5/2)*(a + b*C 
os[c + d*x])^(5/2)),x]
 

Output:

-1/3*((-4*a*(9*a^4*b*B - 17*a^2*b^3*B + 8*b^5*B - 3*a^5*C + 5*a^3*b^2*C - 
2*a*b^4*C)*Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos 
[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x) 
/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c 
+ d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/((a + b)*Sq 
rt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - 4*a*(3*a^5*B - 15*a^3*b^2*B + 
 8*a*b^4*B + 6*a^4*b*C - 2*a^2*b^3*C)*((Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/ 
(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]*Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + 
b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]*Csc[c + d*x]*EllipticF[ArcSin[Sqrt[ 
((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Si 
n[(c + d*x)/2]^4)/((a + b)*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]) - 
(Sqrt[((a + b)*Cot[(c + d*x)/2]^2)/(-a + b)]*Sqrt[-(((a + b)*Cos[c + d*x]* 
Csc[(c + d*x)/2]^2)/a)]*Sqrt[((a + b*Cos[c + d*x])*Csc[(c + d*x)/2]^2)/a]* 
Csc[c + d*x]*EllipticPi[-(a/b), ArcSin[Sqrt[((a + b*Cos[c + d*x])*Csc[(c + 
 d*x)/2]^2)/a]/Sqrt[2]], (-2*a)/(-a + b)]*Sin[(c + d*x)/2]^4)/(b*Sqrt[Cos[ 
c + d*x]]*Sqrt[a + b*Cos[c + d*x]])) + 2*(3*a^4*b*B - 15*a^2*b^3*B + 8*b^5 
*B + 6*a^3*b^2*C - 2*a*b^4*C)*((I*Cos[(c + d*x)/2]*Sqrt[a + b*Cos[c + d*x] 
]*EllipticE[I*ArcSinh[Sin[(c + d*x)/2]/Sqrt[Cos[c + d*x]]], (-2*a)/(-a - b 
)]*Sec[c + d*x])/(b*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*Sqrt[((a + b*Cos 
[c + d*x])*Sec[c + d*x])/(a + b)]) + (2*a*((a*Sqrt[((a + b)*Cot[(c + d*...
 

Rubi [A] (verified)

Time = 2.07 (sec) , antiderivative size = 477, normalized size of antiderivative = 1.05, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.295, Rules used = {3042, 3508, 3042, 3479, 27, 3042, 3534, 27, 3042, 3477, 3042, 3295, 3473}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3508

\(\displaystyle \int \frac {B+C \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {B+C \sin \left (c+d x+\frac {\pi }{2}\right )}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3479

\(\displaystyle \frac {2 \int \frac {3 B a^2+b C a-3 (b B-a C) \cos (c+d x) a+2 b (b B-a C) \cos ^2(c+d x)-4 b^2 B}{2 \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}}dx}{3 a \left (a^2-b^2\right )}+\frac {2 b (b B-a C) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {3 B a^2+b C a-3 (b B-a C) \cos (c+d x) a+2 b (b B-a C) \cos ^2(c+d x)-4 b^2 B}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))^{3/2}}dx}{3 a \left (a^2-b^2\right )}+\frac {2 b (b B-a C) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {3 B a^2+b C a-3 (b B-a C) \sin \left (c+d x+\frac {\pi }{2}\right ) a+2 b (b B-a C) \sin \left (c+d x+\frac {\pi }{2}\right )^2-4 b^2 B}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx}{3 a \left (a^2-b^2\right )}+\frac {2 b (b B-a C) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {\frac {2 \int \frac {3 B a^4+6 b C a^3-15 b^2 B a^2-2 b^3 C a-\left (-3 C a^3+6 b B a^2-b^2 C a-2 b^3 B\right ) \cos (c+d x) a+8 b^4 B}{2 \cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a \left (a^2-b^2\right )}+\frac {2 b \left (-5 a^3 C+8 a^2 b B+a b^2 C-4 b^3 B\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 a \left (a^2-b^2\right )}+\frac {2 b (b B-a C) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {3 B a^4+6 b C a^3-15 b^2 B a^2-2 b^3 C a-\left (-3 C a^3+6 b B a^2-b^2 C a-2 b^3 B\right ) \cos (c+d x) a+8 b^4 B}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a \left (a^2-b^2\right )}+\frac {2 b \left (-5 a^3 C+8 a^2 b B+a b^2 C-4 b^3 B\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 a \left (a^2-b^2\right )}+\frac {2 b (b B-a C) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {\int \frac {3 B a^4+6 b C a^3-15 b^2 B a^2-2 b^3 C a-\left (-3 C a^3+6 b B a^2-b^2 C a-2 b^3 B\right ) \sin \left (c+d x+\frac {\pi }{2}\right ) a+8 b^4 B}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \left (a^2-b^2\right )}+\frac {2 b \left (-5 a^3 C+8 a^2 b B+a b^2 C-4 b^3 B\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 a \left (a^2-b^2\right )}+\frac {2 b (b B-a C) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3477

\(\displaystyle \frac {\frac {(a-b) \left (-3 a^3 (B-C)-3 a^2 b (3 B+C)+2 a b^2 (3 B-C)+8 b^3 B\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}dx+\left (3 a^4 B+6 a^3 b C-15 a^2 b^2 B-2 a b^3 C+8 b^4 B\right ) \int \frac {\cos (c+d x)+1}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+b \cos (c+d x)}}dx}{a \left (a^2-b^2\right )}+\frac {2 b \left (-5 a^3 C+8 a^2 b B+a b^2 C-4 b^3 B\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 a \left (a^2-b^2\right )}+\frac {2 b (b B-a C) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\frac {(a-b) \left (-3 a^3 (B-C)-3 a^2 b (3 B+C)+2 a b^2 (3 B-C)+8 b^3 B\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\left (3 a^4 B+6 a^3 b C-15 a^2 b^2 B-2 a b^3 C+8 b^4 B\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \left (a^2-b^2\right )}+\frac {2 b \left (-5 a^3 C+8 a^2 b B+a b^2 C-4 b^3 B\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 a \left (a^2-b^2\right )}+\frac {2 b (b B-a C) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3295

\(\displaystyle \frac {\frac {\left (3 a^4 B+6 a^3 b C-15 a^2 b^2 B-2 a b^3 C+8 b^4 B\right ) \int \frac {\sin \left (c+d x+\frac {\pi }{2}\right )+1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a+b \sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 (a-b) \sqrt {a+b} \left (-3 a^3 (B-C)-3 a^2 b (3 B+C)+2 a b^2 (3 B-C)+8 b^3 B\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}}{a \left (a^2-b^2\right )}+\frac {2 b \left (-5 a^3 C+8 a^2 b B+a b^2 C-4 b^3 B\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}}{3 a \left (a^2-b^2\right )}+\frac {2 b (b B-a C) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}\)

\(\Big \downarrow \) 3473

\(\displaystyle \frac {2 b (b B-a C) \sin (c+d x)}{3 a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))^{3/2}}+\frac {\frac {2 b \left (-5 a^3 C+8 a^2 b B+a b^2 C-4 b^3 B\right ) \sin (c+d x)}{a d \left (a^2-b^2\right ) \sqrt {\cos (c+d x)} \sqrt {a+b \cos (c+d x)}}+\frac {\frac {2 (a-b) \sqrt {a+b} \left (-3 a^3 (B-C)-3 a^2 b (3 B+C)+2 a b^2 (3 B-C)+8 b^3 B\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right ),-\frac {a+b}{a-b}\right )}{a d}+\frac {2 (a-b) \sqrt {a+b} \left (3 a^4 B+6 a^3 b C-15 a^2 b^2 B-2 a b^3 C+8 b^4 B\right ) \cot (c+d x) \sqrt {\frac {a (1-\sec (c+d x))}{a+b}} \sqrt {\frac {a (\sec (c+d x)+1)}{a-b}} E\left (\arcsin \left (\frac {\sqrt {a+b \cos (c+d x)}}{\sqrt {a+b} \sqrt {\cos (c+d x)}}\right )|-\frac {a+b}{a-b}\right )}{a^2 d}}{a \left (a^2-b^2\right )}}{3 a \left (a^2-b^2\right )}\)

Input:

Int[(B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Cos[c + d*x]^(5/2)*(a + b*Cos[c + 
 d*x])^(5/2)),x]
 

Output:

(2*b*(b*B - a*C)*Sin[c + d*x])/(3*a*(a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*(a + 
b*Cos[c + d*x])^(3/2)) + (((2*(a - b)*Sqrt[a + b]*(3*a^4*B - 15*a^2*b^2*B 
+ 8*b^4*B + 6*a^3*b*C - 2*a*b^3*C)*Cot[c + d*x]*EllipticE[ArcSin[Sqrt[a + 
b*Cos[c + d*x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqr 
t[(a*(1 - Sec[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a 
^2*d) + (2*(a - b)*Sqrt[a + b]*(8*b^3*B - 3*a^3*(B - C) + 2*a*b^2*(3*B - C 
) - 3*a^2*b*(3*B + C))*Cot[c + d*x]*EllipticF[ArcSin[Sqrt[a + b*Cos[c + d* 
x]]/(Sqrt[a + b]*Sqrt[Cos[c + d*x]])], -((a + b)/(a - b))]*Sqrt[(a*(1 - Se 
c[c + d*x]))/(a + b)]*Sqrt[(a*(1 + Sec[c + d*x]))/(a - b)])/(a*d))/(a*(a^2 
 - b^2)) + (2*b*(8*a^2*b*B - 4*b^3*B - 5*a^3*C + a*b^2*C)*Sin[c + d*x])/(a 
*(a^2 - b^2)*d*Sqrt[Cos[c + d*x]]*Sqrt[a + b*Cos[c + d*x]]))/(3*a*(a^2 - b 
^2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3295
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f 
_.)*(x_)]]), x_Symbol] :> Simp[-2*(Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqr 
t[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]*Elli 
pticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2] 
], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] 
&& PosQ[(a + b)/d]
 

rule 3473
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)]) 
^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A* 
(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x] 
)/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + 
d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], 
x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && 
PosQ[(c + d)/b]
 

rule 3477
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_ 
.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S 
imp[(A - B)/(a - b)   Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f* 
x]]), x], x] - Simp[(A*b - a*B)/(a - b)   Int[(1 + Sin[e + f*x])/((a + b*Si 
n[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e 
, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && NeQ[A, B]
 

rule 3479
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
 (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si 
mp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin 
[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 
1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e 
 + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)*(m + n + 
2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B) 
*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n 
}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Rat 
ionalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(I 
ntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0]) 
))
 

rule 3508
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_ 
.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[1/b^2   Int[(a + b*Sin[e + f*x])^(m 
+ 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ 
[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - 
a*b*B + a^2*C, 0]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2955\) vs. \(2(418)=836\).

Time = 16.84 (sec) , antiderivative size = 2956, normalized size of antiderivative = 6.48

method result size
default \(\text {Expression too large to display}\) \(2956\)
parts \(\text {Expression too large to display}\) \(3009\)

Input:

int((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(5/2), 
x,method=_RETURNVERBOSE)
 

Output:

-2/3/d*(C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+c 
os(d*x+c)))^(1/2)*a*b^5*EllipticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1 
/2))*(2*cos(d*x+c)^3+4*cos(d*x+c)^2+2*cos(d*x+c))+B*(cos(d*x+c)/(1+cos(d*x 
+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*b^5*Elliptic 
F(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))*(8*cos(d*x+c)^3+16*cos(d*x+ 
c)^2+8*cos(d*x+c))+C*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d 
*x+c))/(1+cos(d*x+c)))^(1/2)*a^2*b^4*EllipticF(-csc(d*x+c)+cot(d*x+c),(-(a 
-b)/(a+b))^(1/2))*(-2*cos(d*x+c)^3-4*cos(d*x+c)^2-2*cos(d*x+c))+sin(d*x+c) 
*cos(d*x+c)*(-8*cos(d*x+c)+22)*B*a^3*b^3-6*sin(d*x+c)*cos(d*x+c)*B*a^5*b+2 
*C*a*b^5*cos(d*x+c)^2*sin(d*x+c)-3*sin(d*x+c)*B*a^6+(-3*cos(d*x+c)^3-9*cos 
(d*x+c)^2-9*cos(d*x+c)-3)*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+ 
b*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^5*b*EllipticE(-csc(d*x+c)+cot(d*x+c) 
,(-(a-b)/(a+b))^(1/2))+6*sin(d*x+c)*cos(d*x+c)*C*a^5*b+(-3*cos(d*x+c)^2-9* 
cos(d*x+c)+6)*sin(d*x+c)*B*a^4*b^2+(15*cos(d*x+c)^2+5*cos(d*x+c)-3)*sin(d* 
x+c)*B*a^2*b^4-8*B*b^6*cos(d*x+c)^2*sin(d*x+c)+(-3*cos(d*x+c)^3+9*cos(d*x+ 
c)^2+27*cos(d*x+c)+15)*B*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*c 
os(d*x+c))/(1+cos(d*x+c)))^(1/2)*a^4*b^2*EllipticE(-csc(d*x+c)+cot(d*x+c), 
(-(a-b)/(a+b))^(1/2))+(15*cos(d*x+c)^3+45*cos(d*x+c)^2+45*cos(d*x+c)+15)*B 
*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*(1/(a+b)*(a+b*cos(d*x+c))/(1+cos(d*x+c) 
))^(1/2)*a^3*b^3*EllipticE(-csc(d*x+c)+cot(d*x+c),(-(a-b)/(a+b))^(1/2))...
 

Fricas [F]

\[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^ 
(5/2),x, algorithm="fricas")
 

Output:

integral((C*cos(d*x + c) + B)*sqrt(b*cos(d*x + c) + a)*sqrt(cos(d*x + c))/ 
(b^3*cos(d*x + c)^5 + 3*a*b^2*cos(d*x + c)^4 + 3*a^2*b*cos(d*x + c)^3 + a^ 
3*cos(d*x + c)^2), x)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(5/2)/(a+b*cos(d*x+c) 
)**(5/2),x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^ 
(5/2),x, algorithm="maxima")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))/((b*cos(d*x + c) + a)^(5/2)* 
cos(d*x + c)^(5/2)), x)
 

Giac [F]

\[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\int { \frac {C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right )}{{\left (b \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \] Input:

integrate((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^ 
(5/2),x, algorithm="giac")
 

Output:

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c))/((b*cos(d*x + c) + a)^(5/2)* 
cos(d*x + c)^(5/2)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{5/2}\,{\left (a+b\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \] Input:

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(5/2)*(a + b*cos(c + 
 d*x))^(5/2)),x)
 

Output:

int((B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(5/2)*(a + b*cos(c + 
 d*x))^(5/2)), x)
 

Reduce [F]

\[ \int \frac {B \cos (c+d x)+C \cos ^2(c+d x)}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))^{5/2}} \, dx=\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{5} b^{3}+3 \cos \left (d x +c \right )^{4} a \,b^{2}+3 \cos \left (d x +c \right )^{3} a^{2} b +\cos \left (d x +c \right )^{2} a^{3}}d x \right ) b +\left (\int \frac {\sqrt {\cos \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )^{4} b^{3}+3 \cos \left (d x +c \right )^{3} a \,b^{2}+3 \cos \left (d x +c \right )^{2} a^{2} b +\cos \left (d x +c \right ) a^{3}}d x \right ) c \] Input:

int((B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c))^(5/2), 
x)
 

Output:

int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/(cos(c + d*x)**5*b**3 + 
3*cos(c + d*x)**4*a*b**2 + 3*cos(c + d*x)**3*a**2*b + cos(c + d*x)**2*a**3 
),x)*b + int((sqrt(cos(c + d*x)*b + a)*sqrt(cos(c + d*x)))/(cos(c + d*x)** 
4*b**3 + 3*cos(c + d*x)**3*a*b**2 + 3*cos(c + d*x)**2*a**2*b + cos(c + d*x 
)*a**3),x)*c