\(\int \cos ^2(c+d x) (a+b \cos (c+d x)) (A+B \cos (c+d x)+C \cos ^2(c+d x)) \, dx\) [938]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [B] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 39, antiderivative size = 156 \[ \int \cos ^2(c+d x) (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {1}{8} (4 a A+3 b B+3 a C) x+\frac {(5 A b+5 a B+4 b C) \sin (c+d x)}{5 d}+\frac {(4 a A+3 b B+3 a C) \cos (c+d x) \sin (c+d x)}{8 d}+\frac {(b B+a C) \cos ^3(c+d x) \sin (c+d x)}{4 d}+\frac {b C \cos ^4(c+d x) \sin (c+d x)}{5 d}-\frac {(5 A b+5 a B+4 b C) \sin ^3(c+d x)}{15 d} \] Output:

1/8*(4*A*a+3*B*b+3*C*a)*x+1/5*(5*A*b+5*B*a+4*C*b)*sin(d*x+c)/d+1/8*(4*A*a+ 
3*B*b+3*C*a)*cos(d*x+c)*sin(d*x+c)/d+1/4*(B*b+C*a)*cos(d*x+c)^3*sin(d*x+c) 
/d+1/5*b*C*cos(d*x+c)^4*sin(d*x+c)/d-1/15*(5*A*b+5*B*a+4*C*b)*sin(d*x+c)^3 
/d
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.52 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.75 \[ \int \cos ^2(c+d x) (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {480 (A b+a B+b C) \sin (c+d x)-160 (A b+a B+2 b C) \sin ^3(c+d x)+96 b C \sin ^5(c+d x)+15 (4 (4 a A+3 b B+3 a C) (c+d x)+8 (b B+a (A+C)) \sin (2 (c+d x))+(b B+a C) \sin (4 (c+d x)))}{480 d} \] Input:

Integrate[Cos[c + d*x]^2*(a + b*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[ 
c + d*x]^2),x]
 

Output:

(480*(A*b + a*B + b*C)*Sin[c + d*x] - 160*(A*b + a*B + 2*b*C)*Sin[c + d*x] 
^3 + 96*b*C*Sin[c + d*x]^5 + 15*(4*(4*a*A + 3*b*B + 3*a*C)*(c + d*x) + 8*( 
b*B + a*(A + C))*Sin[2*(c + d*x)] + (b*B + a*C)*Sin[4*(c + d*x)]))/(480*d)
 

Rubi [A] (verified)

Time = 0.72 (sec) , antiderivative size = 141, normalized size of antiderivative = 0.90, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.282, Rules used = {3042, 3512, 3042, 3502, 3042, 3227, 3042, 3113, 2009, 3115, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^2(c+d x) (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sin \left (c+d x+\frac {\pi }{2}\right )^2 \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right ) \left (A+B \sin \left (c+d x+\frac {\pi }{2}\right )+C \sin \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 3512

\(\displaystyle \frac {1}{5} \int \cos ^2(c+d x) \left (5 (b B+a C) \cos ^2(c+d x)+(5 A b+4 C b+5 a B) \cos (c+d x)+5 a A\right )dx+\frac {b C \sin (c+d x) \cos ^4(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \sin \left (c+d x+\frac {\pi }{2}\right )^2 \left (5 (b B+a C) \sin \left (c+d x+\frac {\pi }{2}\right )^2+(5 A b+4 C b+5 a B) \sin \left (c+d x+\frac {\pi }{2}\right )+5 a A\right )dx+\frac {b C \sin (c+d x) \cos ^4(c+d x)}{5 d}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \int \cos ^2(c+d x) (5 (4 a A+3 b B+3 a C)+4 (5 A b+4 C b+5 a B) \cos (c+d x))dx+\frac {5 (a C+b B) \sin (c+d x) \cos ^3(c+d x)}{4 d}\right )+\frac {b C \sin (c+d x) \cos ^4(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \int \sin \left (c+d x+\frac {\pi }{2}\right )^2 \left (5 (4 a A+3 b B+3 a C)+4 (5 A b+4 C b+5 a B) \sin \left (c+d x+\frac {\pi }{2}\right )\right )dx+\frac {5 (a C+b B) \sin (c+d x) \cos ^3(c+d x)}{4 d}\right )+\frac {b C \sin (c+d x) \cos ^4(c+d x)}{5 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \left (4 (5 a B+5 A b+4 b C) \int \cos ^3(c+d x)dx+5 (4 a A+3 a C+3 b B) \int \cos ^2(c+d x)dx\right )+\frac {5 (a C+b B) \sin (c+d x) \cos ^3(c+d x)}{4 d}\right )+\frac {b C \sin (c+d x) \cos ^4(c+d x)}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \left (5 (4 a A+3 a C+3 b B) \int \sin \left (c+d x+\frac {\pi }{2}\right )^2dx+4 (5 a B+5 A b+4 b C) \int \sin \left (c+d x+\frac {\pi }{2}\right )^3dx\right )+\frac {5 (a C+b B) \sin (c+d x) \cos ^3(c+d x)}{4 d}\right )+\frac {b C \sin (c+d x) \cos ^4(c+d x)}{5 d}\)

\(\Big \downarrow \) 3113

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \left (5 (4 a A+3 a C+3 b B) \int \sin \left (c+d x+\frac {\pi }{2}\right )^2dx-\frac {4 (5 a B+5 A b+4 b C) \int \left (1-\sin ^2(c+d x)\right )d(-\sin (c+d x))}{d}\right )+\frac {5 (a C+b B) \sin (c+d x) \cos ^3(c+d x)}{4 d}\right )+\frac {b C \sin (c+d x) \cos ^4(c+d x)}{5 d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \left (5 (4 a A+3 a C+3 b B) \int \sin \left (c+d x+\frac {\pi }{2}\right )^2dx-\frac {4 \left (\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right ) (5 a B+5 A b+4 b C)}{d}\right )+\frac {5 (a C+b B) \sin (c+d x) \cos ^3(c+d x)}{4 d}\right )+\frac {b C \sin (c+d x) \cos ^4(c+d x)}{5 d}\)

\(\Big \downarrow \) 3115

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \left (5 (4 a A+3 a C+3 b B) \left (\frac {\int 1dx}{2}+\frac {\sin (c+d x) \cos (c+d x)}{2 d}\right )-\frac {4 \left (\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right ) (5 a B+5 A b+4 b C)}{d}\right )+\frac {5 (a C+b B) \sin (c+d x) \cos ^3(c+d x)}{4 d}\right )+\frac {b C \sin (c+d x) \cos ^4(c+d x)}{5 d}\)

\(\Big \downarrow \) 24

\(\displaystyle \frac {1}{5} \left (\frac {1}{4} \left (5 (4 a A+3 a C+3 b B) \left (\frac {\sin (c+d x) \cos (c+d x)}{2 d}+\frac {x}{2}\right )-\frac {4 \left (\frac {1}{3} \sin ^3(c+d x)-\sin (c+d x)\right ) (5 a B+5 A b+4 b C)}{d}\right )+\frac {5 (a C+b B) \sin (c+d x) \cos ^3(c+d x)}{4 d}\right )+\frac {b C \sin (c+d x) \cos ^4(c+d x)}{5 d}\)

Input:

Int[Cos[c + d*x]^2*(a + b*Cos[c + d*x])*(A + B*Cos[c + d*x] + C*Cos[c + d* 
x]^2),x]
 

Output:

(b*C*Cos[c + d*x]^4*Sin[c + d*x])/(5*d) + ((5*(b*B + a*C)*Cos[c + d*x]^3*S 
in[c + d*x])/(4*d) + (5*(4*a*A + 3*b*B + 3*a*C)*(x/2 + (Cos[c + d*x]*Sin[c 
 + d*x])/(2*d)) - (4*(5*A*b + 5*a*B + 4*b*C)*(-Sin[c + d*x] + Sin[c + d*x] 
^3/3))/d)/4)/5
 

Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3113
Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1)   Subst[Int[Exp 
and[(1 - x^2)^((n - 1)/2), x], x], x, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] 
 && IGtQ[(n - 1)/2, 0]
 

rule 3115
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[b^2*((n - 1)/n)   Int[(b*Sin 
[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && IntegerQ[ 
2*n]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 

rule 3512
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f 
_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*d*Cos[e + f*x]*Sin[e + f*x]*((a + b*Si 
n[e + f*x])^(m + 1)/(b*f*(m + 3))), x] + Simp[1/(b*(m + 3))   Int[(a + b*Si 
n[e + f*x])^m*Simp[a*C*d + A*b*c*(m + 3) + b*(B*c*(m + 3) + d*(C*(m + 2) + 
A*(m + 3)))*Sin[e + f*x] - (2*a*C*d - b*(c*C + B*d)*(m + 3))*Sin[e + f*x]^2 
, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 
0] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]
 
Maple [A] (verified)

Time = 13.39 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.78

method result size
parallelrisch \(\frac {120 \left (B b +a \left (A +C \right )\right ) \sin \left (2 d x +2 c \right )+10 \left (\left (4 A +5 C \right ) b +4 B a \right ) \sin \left (3 d x +3 c \right )+15 \left (B b +C a \right ) \sin \left (4 d x +4 c \right )+6 C b \sin \left (5 d x +5 c \right )+60 \left (\left (6 A +5 C \right ) b +6 B a \right ) \sin \left (d x +c \right )+240 x \left (\frac {3 B b}{4}+a \left (A +\frac {3 C}{4}\right )\right ) d}{480 d}\) \(121\)
parts \(\frac {\left (A b +B a \right ) \left (2+\cos \left (d x +c \right )^{2}\right ) \sin \left (d x +c \right )}{3 d}+\frac {\left (B b +C a \right ) \left (\frac {\left (\cos \left (d x +c \right )^{3}+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )}{d}+\frac {a A \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {C b \left (\frac {8}{3}+\cos \left (d x +c \right )^{4}+\frac {4 \cos \left (d x +c \right )^{2}}{3}\right ) \sin \left (d x +c \right )}{5 d}\) \(135\)
derivativedivides \(\frac {\frac {C b \left (\frac {8}{3}+\cos \left (d x +c \right )^{4}+\frac {4 \cos \left (d x +c \right )^{2}}{3}\right ) \sin \left (d x +c \right )}{5}+B b \left (\frac {\left (\cos \left (d x +c \right )^{3}+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+C a \left (\frac {\left (\cos \left (d x +c \right )^{3}+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+\frac {A b \left (2+\cos \left (d x +c \right )^{2}\right ) \sin \left (d x +c \right )}{3}+\frac {B a \left (2+\cos \left (d x +c \right )^{2}\right ) \sin \left (d x +c \right )}{3}+a A \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d}\) \(173\)
default \(\frac {\frac {C b \left (\frac {8}{3}+\cos \left (d x +c \right )^{4}+\frac {4 \cos \left (d x +c \right )^{2}}{3}\right ) \sin \left (d x +c \right )}{5}+B b \left (\frac {\left (\cos \left (d x +c \right )^{3}+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+C a \left (\frac {\left (\cos \left (d x +c \right )^{3}+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+\frac {A b \left (2+\cos \left (d x +c \right )^{2}\right ) \sin \left (d x +c \right )}{3}+\frac {B a \left (2+\cos \left (d x +c \right )^{2}\right ) \sin \left (d x +c \right )}{3}+a A \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d}\) \(173\)
risch \(\frac {x a A}{2}+\frac {3 x B b}{8}+\frac {3 a C x}{8}+\frac {3 \sin \left (d x +c \right ) A b}{4 d}+\frac {3 \sin \left (d x +c \right ) B a}{4 d}+\frac {5 b C \sin \left (d x +c \right )}{8 d}+\frac {C b \sin \left (5 d x +5 c \right )}{80 d}+\frac {\sin \left (4 d x +4 c \right ) B b}{32 d}+\frac {\sin \left (4 d x +4 c \right ) C a}{32 d}+\frac {\sin \left (3 d x +3 c \right ) A b}{12 d}+\frac {\sin \left (3 d x +3 c \right ) B a}{12 d}+\frac {5 \sin \left (3 d x +3 c \right ) C b}{48 d}+\frac {\sin \left (2 d x +2 c \right ) a A}{4 d}+\frac {\sin \left (2 d x +2 c \right ) B b}{4 d}+\frac {\sin \left (2 d x +2 c \right ) C a}{4 d}\) \(200\)
norman \(\frac {\left (\frac {1}{2} a A +\frac {3}{8} B b +\frac {3}{8} C a \right ) x +\left (5 a A +\frac {15}{4} B b +\frac {15}{4} C a \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}+\left (5 a A +\frac {15}{4} B b +\frac {15}{4} C a \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}+\left (\frac {1}{2} a A +\frac {3}{8} B b +\frac {3}{8} C a \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{10}+\left (\frac {5}{2} a A +\frac {15}{8} B b +\frac {15}{8} C a \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+\left (\frac {5}{2} a A +\frac {15}{8} B b +\frac {15}{8} C a \right ) x \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{8}+\frac {4 \left (25 A b +25 B a +29 C b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{5}}{15 d}-\frac {\left (4 a A -8 A b -8 B a +5 B b +5 C a -8 C b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{9}}{4 d}+\frac {\left (4 a A +8 A b +8 B a +5 B b +5 C a +8 C b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{4 d}-\frac {\left (12 a A -32 A b -32 B a +3 B b +3 C a -16 C b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{7}}{6 d}+\frac {\left (12 a A +32 A b +32 B a +3 B b +3 C a +16 C b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{6 d}}{\left (1+\tan \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}\right )^{5}}\) \(354\)
orering \(\text {Expression too large to display}\) \(9987\)

Input:

int(cos(d*x+c)^2*(a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2),x,method 
=_RETURNVERBOSE)
 

Output:

1/480*(120*(B*b+a*(A+C))*sin(2*d*x+2*c)+10*((4*A+5*C)*b+4*B*a)*sin(3*d*x+3 
*c)+15*(B*b+C*a)*sin(4*d*x+4*c)+6*C*b*sin(5*d*x+5*c)+60*((6*A+5*C)*b+6*B*a 
)*sin(d*x+c)+240*x*(3/4*B*b+a*(A+3/4*C))*d)/d
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.78 \[ \int \cos ^2(c+d x) (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {15 \, {\left ({\left (4 \, A + 3 \, C\right )} a + 3 \, B b\right )} d x + {\left (24 \, C b \cos \left (d x + c\right )^{4} + 30 \, {\left (C a + B b\right )} \cos \left (d x + c\right )^{3} + 8 \, {\left (5 \, B a + {\left (5 \, A + 4 \, C\right )} b\right )} \cos \left (d x + c\right )^{2} + 80 \, B a + 16 \, {\left (5 \, A + 4 \, C\right )} b + 15 \, {\left ({\left (4 \, A + 3 \, C\right )} a + 3 \, B b\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{120 \, d} \] Input:

integrate(cos(d*x+c)^2*(a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2),x, 
 algorithm="fricas")
 

Output:

1/120*(15*((4*A + 3*C)*a + 3*B*b)*d*x + (24*C*b*cos(d*x + c)^4 + 30*(C*a + 
 B*b)*cos(d*x + c)^3 + 8*(5*B*a + (5*A + 4*C)*b)*cos(d*x + c)^2 + 80*B*a + 
 16*(5*A + 4*C)*b + 15*((4*A + 3*C)*a + 3*B*b)*cos(d*x + c))*sin(d*x + c)) 
/d
 

Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 428 vs. \(2 (151) = 302\).

Time = 0.27 (sec) , antiderivative size = 428, normalized size of antiderivative = 2.74 \[ \int \cos ^2(c+d x) (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\begin {cases} \frac {A a x \sin ^{2}{\left (c + d x \right )}}{2} + \frac {A a x \cos ^{2}{\left (c + d x \right )}}{2} + \frac {A a \sin {\left (c + d x \right )} \cos {\left (c + d x \right )}}{2 d} + \frac {2 A b \sin ^{3}{\left (c + d x \right )}}{3 d} + \frac {A b \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{d} + \frac {2 B a \sin ^{3}{\left (c + d x \right )}}{3 d} + \frac {B a \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{d} + \frac {3 B b x \sin ^{4}{\left (c + d x \right )}}{8} + \frac {3 B b x \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{4} + \frac {3 B b x \cos ^{4}{\left (c + d x \right )}}{8} + \frac {3 B b \sin ^{3}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{8 d} + \frac {5 B b \sin {\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{8 d} + \frac {3 C a x \sin ^{4}{\left (c + d x \right )}}{8} + \frac {3 C a x \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{4} + \frac {3 C a x \cos ^{4}{\left (c + d x \right )}}{8} + \frac {3 C a \sin ^{3}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{8 d} + \frac {5 C a \sin {\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{8 d} + \frac {8 C b \sin ^{5}{\left (c + d x \right )}}{15 d} + \frac {4 C b \sin ^{3}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{3 d} + \frac {C b \sin {\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{d} & \text {for}\: d \neq 0 \\x \left (a + b \cos {\left (c \right )}\right ) \left (A + B \cos {\left (c \right )} + C \cos ^{2}{\left (c \right )}\right ) \cos ^{2}{\left (c \right )} & \text {otherwise} \end {cases} \] Input:

integrate(cos(d*x+c)**2*(a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)**2), 
x)
 

Output:

Piecewise((A*a*x*sin(c + d*x)**2/2 + A*a*x*cos(c + d*x)**2/2 + A*a*sin(c + 
 d*x)*cos(c + d*x)/(2*d) + 2*A*b*sin(c + d*x)**3/(3*d) + A*b*sin(c + d*x)* 
cos(c + d*x)**2/d + 2*B*a*sin(c + d*x)**3/(3*d) + B*a*sin(c + d*x)*cos(c + 
 d*x)**2/d + 3*B*b*x*sin(c + d*x)**4/8 + 3*B*b*x*sin(c + d*x)**2*cos(c + d 
*x)**2/4 + 3*B*b*x*cos(c + d*x)**4/8 + 3*B*b*sin(c + d*x)**3*cos(c + d*x)/ 
(8*d) + 5*B*b*sin(c + d*x)*cos(c + d*x)**3/(8*d) + 3*C*a*x*sin(c + d*x)**4 
/8 + 3*C*a*x*sin(c + d*x)**2*cos(c + d*x)**2/4 + 3*C*a*x*cos(c + d*x)**4/8 
 + 3*C*a*sin(c + d*x)**3*cos(c + d*x)/(8*d) + 5*C*a*sin(c + d*x)*cos(c + d 
*x)**3/(8*d) + 8*C*b*sin(c + d*x)**5/(15*d) + 4*C*b*sin(c + d*x)**3*cos(c 
+ d*x)**2/(3*d) + C*b*sin(c + d*x)*cos(c + d*x)**4/d, Ne(d, 0)), (x*(a + b 
*cos(c))*(A + B*cos(c) + C*cos(c)**2)*cos(c)**2, True))
 

Maxima [A] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 166, normalized size of antiderivative = 1.06 \[ \int \cos ^2(c+d x) (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {120 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} A a - 160 \, {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} B a + 15 \, {\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} C a - 160 \, {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} A b + 15 \, {\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} B b + 32 \, {\left (3 \, \sin \left (d x + c\right )^{5} - 10 \, \sin \left (d x + c\right )^{3} + 15 \, \sin \left (d x + c\right )\right )} C b}{480 \, d} \] Input:

integrate(cos(d*x+c)^2*(a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2),x, 
 algorithm="maxima")
 

Output:

1/480*(120*(2*d*x + 2*c + sin(2*d*x + 2*c))*A*a - 160*(sin(d*x + c)^3 - 3* 
sin(d*x + c))*B*a + 15*(12*d*x + 12*c + sin(4*d*x + 4*c) + 8*sin(2*d*x + 2 
*c))*C*a - 160*(sin(d*x + c)^3 - 3*sin(d*x + c))*A*b + 15*(12*d*x + 12*c + 
 sin(4*d*x + 4*c) + 8*sin(2*d*x + 2*c))*B*b + 32*(3*sin(d*x + c)^5 - 10*si 
n(d*x + c)^3 + 15*sin(d*x + c))*C*b)/d
 

Giac [A] (verification not implemented)

Time = 0.13 (sec) , antiderivative size = 129, normalized size of antiderivative = 0.83 \[ \int \cos ^2(c+d x) (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {1}{8} \, {\left (4 \, A a + 3 \, C a + 3 \, B b\right )} x + \frac {C b \sin \left (5 \, d x + 5 \, c\right )}{80 \, d} + \frac {{\left (C a + B b\right )} \sin \left (4 \, d x + 4 \, c\right )}{32 \, d} + \frac {{\left (4 \, B a + 4 \, A b + 5 \, C b\right )} \sin \left (3 \, d x + 3 \, c\right )}{48 \, d} + \frac {{\left (A a + C a + B b\right )} \sin \left (2 \, d x + 2 \, c\right )}{4 \, d} + \frac {{\left (6 \, B a + 6 \, A b + 5 \, C b\right )} \sin \left (d x + c\right )}{8 \, d} \] Input:

integrate(cos(d*x+c)^2*(a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2),x, 
 algorithm="giac")
 

Output:

1/8*(4*A*a + 3*C*a + 3*B*b)*x + 1/80*C*b*sin(5*d*x + 5*c)/d + 1/32*(C*a + 
B*b)*sin(4*d*x + 4*c)/d + 1/48*(4*B*a + 4*A*b + 5*C*b)*sin(3*d*x + 3*c)/d 
+ 1/4*(A*a + C*a + B*b)*sin(2*d*x + 2*c)/d + 1/8*(6*B*a + 6*A*b + 5*C*b)*s 
in(d*x + c)/d
 

Mupad [B] (verification not implemented)

Time = 2.99 (sec) , antiderivative size = 259, normalized size of antiderivative = 1.66 \[ \int \cos ^2(c+d x) (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {x\,\left (A\,a+\frac {3\,B\,b}{4}+\frac {3\,C\,a}{4}\right )}{2}+\frac {\left (2\,A\,b-A\,a+2\,B\,a-\frac {5\,B\,b}{4}-\frac {5\,C\,a}{4}+2\,C\,b\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^9+\left (\frac {16\,A\,b}{3}-2\,A\,a+\frac {16\,B\,a}{3}-\frac {B\,b}{2}-\frac {C\,a}{2}+\frac {8\,C\,b}{3}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^7+\left (\frac {20\,A\,b}{3}+\frac {20\,B\,a}{3}+\frac {116\,C\,b}{15}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5+\left (2\,A\,a+\frac {16\,A\,b}{3}+\frac {16\,B\,a}{3}+\frac {B\,b}{2}+\frac {C\,a}{2}+\frac {8\,C\,b}{3}\right )\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3+\left (A\,a+2\,A\,b+2\,B\,a+\frac {5\,B\,b}{4}+\frac {5\,C\,a}{4}+2\,C\,b\right )\,\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^{10}+5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^8+10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6+10\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4+5\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )} \] Input:

int(cos(c + d*x)^2*(a + b*cos(c + d*x))*(A + B*cos(c + d*x) + C*cos(c + d* 
x)^2),x)
 

Output:

(x*(A*a + (3*B*b)/4 + (3*C*a)/4))/2 + (tan(c/2 + (d*x)/2)^3*(2*A*a + (16*A 
*b)/3 + (16*B*a)/3 + (B*b)/2 + (C*a)/2 + (8*C*b)/3) - tan(c/2 + (d*x)/2)^9 
*(A*a - 2*A*b - 2*B*a + (5*B*b)/4 + (5*C*a)/4 - 2*C*b) - tan(c/2 + (d*x)/2 
)^7*(2*A*a - (16*A*b)/3 - (16*B*a)/3 + (B*b)/2 + (C*a)/2 - (8*C*b)/3) + ta 
n(c/2 + (d*x)/2)*(A*a + 2*A*b + 2*B*a + (5*B*b)/4 + (5*C*a)/4 + 2*C*b) + t 
an(c/2 + (d*x)/2)^5*((20*A*b)/3 + (20*B*a)/3 + (116*C*b)/15))/(d*(5*tan(c/ 
2 + (d*x)/2)^2 + 10*tan(c/2 + (d*x)/2)^4 + 10*tan(c/2 + (d*x)/2)^6 + 5*tan 
(c/2 + (d*x)/2)^8 + tan(c/2 + (d*x)/2)^10 + 1))
 

Reduce [B] (verification not implemented)

Time = 0.17 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.08 \[ \int \cos ^2(c+d x) (a+b \cos (c+d x)) \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \, dx=\frac {-30 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3} a c -30 \cos \left (d x +c \right ) \sin \left (d x +c \right )^{3} b^{2}+60 \cos \left (d x +c \right ) \sin \left (d x +c \right ) a^{2}+75 \cos \left (d x +c \right ) \sin \left (d x +c \right ) a c +75 \cos \left (d x +c \right ) \sin \left (d x +c \right ) b^{2}+24 \sin \left (d x +c \right )^{5} b c -80 \sin \left (d x +c \right )^{3} a b -80 \sin \left (d x +c \right )^{3} b c +240 \sin \left (d x +c \right ) a b +120 \sin \left (d x +c \right ) b c +60 a^{2} d x +45 a c d x +45 b^{2} d x}{120 d} \] Input:

int(cos(d*x+c)^2*(a+b*cos(d*x+c))*(A+B*cos(d*x+c)+C*cos(d*x+c)^2),x)
 

Output:

( - 30*cos(c + d*x)*sin(c + d*x)**3*a*c - 30*cos(c + d*x)*sin(c + d*x)**3* 
b**2 + 60*cos(c + d*x)*sin(c + d*x)*a**2 + 75*cos(c + d*x)*sin(c + d*x)*a* 
c + 75*cos(c + d*x)*sin(c + d*x)*b**2 + 24*sin(c + d*x)**5*b*c - 80*sin(c 
+ d*x)**3*a*b - 80*sin(c + d*x)**3*b*c + 240*sin(c + d*x)*a*b + 120*sin(c 
+ d*x)*b*c + 60*a**2*d*x + 45*a*c*d*x + 45*b**2*d*x)/(120*d)