\(\int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx\) [785]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 184 \[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {\left (\frac {1}{8}-\frac {i}{8}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{a^{5/2} d}+\frac {1}{5 d \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}+\frac {i}{6 a d \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}+\frac {1}{4 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}} \] Output:

(-1/8+1/8*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/ 
2))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/a^(5/2)/d+1/5/d/cot(d*x+c)^(5/2)/(a+ 
I*a*tan(d*x+c))^(5/2)+1/6*I/a/d/cot(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(3/2)+ 
1/4/a^2/d/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 2.13 (sec) , antiderivative size = 138, normalized size of antiderivative = 0.75 \[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx=\frac {\left (\frac {1}{120}+\frac {i}{120}\right ) \left (\frac {15 i \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\tan ^{\frac {5}{2}}(c+d x)}-\frac {(1-i) \sqrt {a} \left (-13+40 i \cot (c+d x)+15 \cot ^2(c+d x)\right )}{(-i+\tan (c+d x))^2 \sqrt {a+i a \tan (c+d x)}}\right )}{a^{5/2} d \cot ^{\frac {5}{2}}(c+d x)} \] Input:

Integrate[1/(Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(5/2)),x]
 

Output:

((1/120 + I/120)*(((15*I)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqr 
t[a + I*a*Tan[c + d*x]]])/Tan[c + d*x]^(5/2) - ((1 - I)*Sqrt[a]*(-13 + (40 
*I)*Cot[c + d*x] + 15*Cot[c + d*x]^2))/((-I + Tan[c + d*x])^2*Sqrt[a + I*a 
*Tan[c + d*x]])))/(a^(5/2)*d*Cot[c + d*x]^(5/2))
 

Rubi [A] (verified)

Time = 0.87 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.07, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.393, Rules used = {3042, 4729, 3042, 4030, 3042, 4029, 3042, 4029, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\cot (c+d x)^{3/2} (a+i a \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\tan ^{\frac {3}{2}}(c+d x)}{(i \tan (c+d x) a+a)^{5/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\tan (c+d x)^{3/2}}{(i \tan (c+d x) a+a)^{5/2}}dx\)

\(\Big \downarrow \) 4030

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {\tan ^{\frac {3}{2}}(c+d x)}{(i \tan (c+d x) a+a)^{3/2}}dx}{2 a}+\frac {\tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\int \frac {\tan (c+d x)^{3/2}}{(i \tan (c+d x) a+a)^{3/2}}dx}{2 a}+\frac {\tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 4029

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \int \frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}dx}{2 a}}{2 a}+\frac {\tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \int \frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}dx}{2 a}}{2 a}+\frac {\tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 4029

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \left (\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {i \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )}{2 a}}{2 a}+\frac {\tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \left (\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {i \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )}{2 a}}{2 a}+\frac {\tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 4027

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \left (\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {a \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}\right )}{2 a}}{2 a}+\frac {\tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \left (\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}\right )}{2 a}}{2 a}+\frac {\tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}\right )\)

Input:

Int[1/(Cot[c + d*x]^(3/2)*(a + I*a*Tan[c + d*x])^(5/2)),x]
 

Output:

Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(Tan[c + d*x]^(5/2)/(5*d*(a + I*a*Ta 
n[c + d*x])^(5/2)) + (((I/3)*Tan[c + d*x]^(3/2))/(d*(a + I*a*Tan[c + d*x]) 
^(3/2)) - ((I/2)*(((-1/2 - I/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x] 
])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a]*d) + (I*Sqrt[Tan[c + d*x]])/(d*Sq 
rt[a + I*a*Tan[c + d*x]])))/a)/(2*a))
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4029
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e 
 + f*x])^n/(2*b*f*m)), x] - Simp[(a*c - b*d)/(2*b^2)   Int[(a + b*Tan[e + f 
*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, 
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Eq 
Q[m + n, 0] && LeQ[m, -2^(-1)]
 

rule 4030
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e 
 + f*x])^(n + 1)/(2*f*m*(b*c - a*d))), x] + Simp[1/(2*a)   Int[(a + b*Tan[e 
 + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f} 
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[ 
m + n + 1, 0] && LtQ[m, -1]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 585 vs. \(2 (145 ) = 290\).

Time = 0.43 (sec) , antiderivative size = 586, normalized size of antiderivative = 3.18

method result size
derivativedivides \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (-15 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{4}+52 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )^{3}+90 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{2}-60 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-220 i \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-15 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +212 \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )^{2}+60 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-60 \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{240 d \left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {3}{2}} \tan \left (d x +c \right ) a^{3} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right )^{4} \sqrt {-i a}}\) \(586\)
default \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (-15 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{4}+52 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )^{3}+90 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{2}-60 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}-220 i \sqrt {-i a}\, \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}-15 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +212 \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )^{2}+60 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-60 \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\right )}{240 d \left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {3}{2}} \tan \left (d x +c \right ) a^{3} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \left (-\tan \left (d x +c \right )+i\right )^{4} \sqrt {-i a}}\) \(586\)

Input:

int(1/cot(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

-1/240/d*(a*(1+I*tan(d*x+c)))^(1/2)*(-15*I*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a 
*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*2^ 
(1/2)*a*tan(d*x+c)^4+52*I*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/ 
2)*tan(d*x+c)^3+90*I*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d 
*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*2^(1/2)*a*tan(d*x+c)^2-6 
0*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/ 
2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^3-220*I*(-I*a)^(1/2)*( 
a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)-15*I*ln(-(-2*2^(1/2)*(-I*a 
)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x 
+c)+I))*2^(1/2)*a+212*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*t 
an(d*x+c)^2+60*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan 
(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)-60*(-I*a) 
^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2))/(1/tan(d*x+c))^(3/2)/tan(d*x 
+c)/a^3/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-tan(d*x+c)+I)^4/(-I*a)^(1/ 
2)
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 369 vs. \(2 (136) = 272\).

Time = 0.10 (sec) , antiderivative size = 369, normalized size of antiderivative = 2.01 \[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx=\frac {{\left (30 \, a^{3} d \sqrt {-\frac {i}{8 \, a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (-4 \, {\left (2 \, \sqrt {2} {\left (i \, a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} - i \, a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {-\frac {i}{8 \, a^{5} d^{2}}} - i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 30 \, a^{3} d \sqrt {-\frac {i}{8 \, a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (-4 \, {\left (2 \, \sqrt {2} {\left (-i \, a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} + i \, a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {-\frac {i}{8 \, a^{5} d^{2}}} - i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} {\left (-17 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 16 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 4 i \, e^{\left (2 i \, d x + 2 i \, c\right )} - 3 i\right )}\right )} e^{\left (-5 i \, d x - 5 i \, c\right )}}{120 \, a^{3} d} \] Input:

integrate(1/cot(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas 
")
 

Output:

1/120*(30*a^3*d*sqrt(-1/8*I/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(-4*(2*sqrt( 
2)*(I*a^3*d*e^(2*I*d*x + 2*I*c) - I*a^3*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1 
))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(-1/8*I 
/(a^5*d^2)) - I*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 30*a^3*d*sqrt(-1/8* 
I/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(-4*(2*sqrt(2)*(-I*a^3*d*e^(2*I*d*x + 
2*I*c) + I*a^3*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2 
*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(-1/8*I/(a^5*d^2)) - I*a*e^(I*d* 
x + I*c))*e^(-I*d*x - I*c)) + sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sq 
rt((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*(-17*I*e^(6*I*d* 
x + 6*I*c) + 16*I*e^(4*I*d*x + 4*I*c) + 4*I*e^(2*I*d*x + 2*I*c) - 3*I))*e^ 
(-5*I*d*x - 5*I*c)/(a^3*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(1/cot(d*x+c)**(3/2)/(a+I*a*tan(d*x+c))**(5/2),x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(1/cot(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima 
")
 

Output:

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
 

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(1/cot(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx=\int \frac {1}{{\mathrm {cot}\left (c+d\,x\right )}^{3/2}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}} \,d x \] Input:

int(1/(cot(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(5/2)),x)
 

Output:

int(1/(cot(c + d*x)^(3/2)*(a + a*tan(c + d*x)*1i)^(5/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {\int \frac {1}{\sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right ) \tan \left (d x +c \right )^{2}-2 \sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right ) \tan \left (d x +c \right ) i -\sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right )}d x}{\sqrt {a}\, a^{2}} \] Input:

int(1/cot(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(5/2),x)
 

Output:

( - int(1/(sqrt(tan(c + d*x)*i + 1)*sqrt(cot(c + d*x))*cot(c + d*x)*tan(c 
+ d*x)**2 - 2*sqrt(tan(c + d*x)*i + 1)*sqrt(cot(c + d*x))*cot(c + d*x)*tan 
(c + d*x)*i - sqrt(tan(c + d*x)*i + 1)*sqrt(cot(c + d*x))*cot(c + d*x)),x) 
)/(sqrt(a)*a**2)