\(\int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx\) [786]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F(-2)]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 28, antiderivative size = 186 \[ \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx=\frac {\left (\frac {1}{8}+\frac {i}{8}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right ) \sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)}}{a^{5/2} d}+\frac {i}{5 d \cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}}+\frac {1}{6 a d \cot ^{\frac {3}{2}}(c+d x) (a+i a \tan (c+d x))^{3/2}}-\frac {i}{4 a^2 d \sqrt {\cot (c+d x)} \sqrt {a+i a \tan (c+d x)}} \] Output:

(1/8+1/8*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2 
))*cot(d*x+c)^(1/2)*tan(d*x+c)^(1/2)/a^(5/2)/d+1/5*I/d/cot(d*x+c)^(5/2)/(a 
+I*a*tan(d*x+c))^(5/2)+1/6/a/d/cot(d*x+c)^(3/2)/(a+I*a*tan(d*x+c))^(3/2)-1 
/4*I/a^2/d/cot(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 3.77 (sec) , antiderivative size = 158, normalized size of antiderivative = 0.85 \[ \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx=\frac {\cot ^{\frac {3}{2}}(c+d x) \sec (c+d x) \left (30 e^{2 i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}} \text {arctanh}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right ) \csc (2 (c+d x))+2 \sec (c+d x) (11 i-26 i \cos (2 (c+d x))+20 \sin (2 (c+d x)))\right )}{120 a^2 d (i+\cot (c+d x))^2 \sqrt {a+i a \tan (c+d x)}} \] Input:

Integrate[1/(Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(5/2)),x]
 

Output:

(Cot[c + d*x]^(3/2)*Sec[c + d*x]*(30*E^((2*I)*(c + d*x))*Sqrt[-1 + E^((2*I 
)*(c + d*x))]*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]]*Csc[ 
2*(c + d*x)] + 2*Sec[c + d*x]*(11*I - (26*I)*Cos[2*(c + d*x)] + 20*Sin[2*( 
c + d*x)])))/(120*a^2*d*(I + Cot[c + d*x])^2*Sqrt[a + I*a*Tan[c + d*x]])
 

Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 201, normalized size of antiderivative = 1.08, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.393, Rules used = {3042, 4729, 3042, 4029, 3042, 4029, 3042, 4029, 3042, 4027, 218}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\cot (c+d x)^{5/2} (a+i a \tan (c+d x))^{5/2}}dx\)

\(\Big \downarrow \) 4729

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\tan ^{\frac {5}{2}}(c+d x)}{(i \tan (c+d x) a+a)^{5/2}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \int \frac {\tan (c+d x)^{5/2}}{(i \tan (c+d x) a+a)^{5/2}}dx\)

\(\Big \downarrow \) 4029

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \int \frac {\tan ^{\frac {3}{2}}(c+d x)}{(i \tan (c+d x) a+a)^{3/2}}dx}{2 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \int \frac {\tan (c+d x)^{3/2}}{(i \tan (c+d x) a+a)^{3/2}}dx}{2 a}\right )\)

\(\Big \downarrow \) 4029

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \int \frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}dx}{2 a}\right )}{2 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \int \frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}dx}{2 a}\right )}{2 a}\right )\)

\(\Big \downarrow \) 4029

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \left (\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {i \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )}{2 a}\right )}{2 a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \left (\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {i \int \frac {\sqrt {i \tan (c+d x) a+a}}{\sqrt {\tan (c+d x)}}dx}{2 a}\right )}{2 a}\right )}{2 a}\right )\)

\(\Big \downarrow \) 4027

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \left (\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {a \int \frac {1}{-\frac {2 \tan (c+d x) a^2}{i \tan (c+d x) a+a}-i a}d\frac {\sqrt {\tan (c+d x)}}{\sqrt {i \tan (c+d x) a+a}}}{d}\right )}{2 a}\right )}{2 a}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle \sqrt {\tan (c+d x)} \sqrt {\cot (c+d x)} \left (\frac {i \tan ^{\frac {5}{2}}(c+d x)}{5 d (a+i a \tan (c+d x))^{5/2}}-\frac {i \left (\frac {i \tan ^{\frac {3}{2}}(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {i \left (\frac {i \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {\left (\frac {1}{2}+\frac {i}{2}\right ) \text {arctanh}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}\right )}{2 a}\right )}{2 a}\right )\)

Input:

Int[1/(Cot[c + d*x]^(5/2)*(a + I*a*Tan[c + d*x])^(5/2)),x]
 

Output:

Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(((I/5)*Tan[c + d*x]^(5/2))/(d*(a + 
I*a*Tan[c + d*x])^(5/2)) - ((I/2)*(((I/3)*Tan[c + d*x]^(3/2))/(d*(a + I*a* 
Tan[c + d*x])^(3/2)) - ((I/2)*(((-1/2 - I/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt 
[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a]*d) + (I*Sqrt[Tan[c + 
 d*x]])/(d*Sqrt[a + I*a*Tan[c + d*x]])))/a))/a)
 

Defintions of rubi rules used

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4027
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) 
 + (f_.)*(x_)]], x_Symbol] :> Simp[-2*a*(b/f)   Subst[Int[1/(a*c - b*d - 2* 
a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x] /; 
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && N 
eQ[c^2 + d^2, 0]
 

rule 4029
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e 
 + f*x])^n/(2*b*f*m)), x] - Simp[(a*c - b*d)/(2*b^2)   Int[(a + b*Tan[e + f 
*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, 
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && Eq 
Q[m + n, 0] && LeQ[m, -2^(-1)]
 

rule 4729
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a 
+ b*x])^m*(c*Tan[a + b*x])^m   Int[ActivateTrig[u]/(c*Tan[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownTangentIntegrandQ[u, 
x]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 584 vs. \(2 (146 ) = 292\).

Time = 0.43 (sec) , antiderivative size = 585, normalized size of antiderivative = 3.15

method result size
derivativedivides \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (-60 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}+15 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{4}+308 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{2}+60 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-148 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{3}-90 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{2}-60 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+220 \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+15 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \right )}{240 d \left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {5}{2}} \tan \left (d x +c \right )^{2} a^{3} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{4}}\) \(585\)
default \(\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (-60 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{3}+15 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{4}+308 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{2}+60 i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )-148 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \tan \left (d x +c \right )^{3}-90 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )^{2}-60 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+220 \tan \left (d x +c \right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}+15 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \right )}{240 d \left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {5}{2}} \tan \left (d x +c \right )^{2} a^{3} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{4}}\) \(585\)

Input:

int(1/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 

Output:

1/240/d*(a*(1+I*tan(d*x+c)))^(1/2)*(-60*I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^( 
1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c) 
+I))*a*tan(d*x+c)^3+15*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)* 
(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^4 
+308*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^2+60* 
I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/ 
2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)-148*(a*tan(d*x+c)*(1+I 
*tan(d*x+c)))^(1/2)*(-I*a)^(1/2)*tan(d*x+c)^3-90*2^(1/2)*ln(-(-2*2^(1/2)*( 
-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan 
(d*x+c)+I))*a*tan(d*x+c)^2-60*I*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I* 
a)^(1/2)+220*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2) 
+15*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^( 
1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a)/(1/tan(d*x+c))^(5/2)/tan(d*x+c 
)^2/a^3/(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-I*a)^(1/2)/(-tan(d*x+c)+I) 
^4
 

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 368 vs. \(2 (136) = 272\).

Time = 0.09 (sec) , antiderivative size = 368, normalized size of antiderivative = 1.98 \[ \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx=\frac {{\left (30 \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (4 \, {\left (2 \, \sqrt {2} {\left (a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} - a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {i}{8 \, a^{5} d^{2}}} + i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - 30 \, a^{3} d \sqrt {\frac {i}{8 \, a^{5} d^{2}}} e^{\left (5 i \, d x + 5 i \, c\right )} \log \left (-4 \, {\left (2 \, \sqrt {2} {\left (a^{3} d e^{\left (2 i \, d x + 2 i \, c\right )} - a^{3} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} \sqrt {\frac {i}{8 \, a^{5} d^{2}}} - i \, a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) - \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} - 1}} {\left (23 \, e^{\left (6 i \, d x + 6 i \, c\right )} - 34 \, e^{\left (4 i \, d x + 4 i \, c\right )} + 14 \, e^{\left (2 i \, d x + 2 i \, c\right )} - 3\right )}\right )} e^{\left (-5 i \, d x - 5 i \, c\right )}}{120 \, a^{3} d} \] Input:

integrate(1/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="fricas 
")
 

Output:

1/120*(30*a^3*d*sqrt(1/8*I/(a^5*d^2))*e^(5*I*d*x + 5*I*c)*log(4*(2*sqrt(2) 
*(a^3*d*e^(2*I*d*x + 2*I*c) - a^3*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqr 
t((I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*sqrt(1/8*I/(a^5*d 
^2)) + I*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) - 30*a^3*d*sqrt(1/8*I/(a^5*d 
^2))*e^(5*I*d*x + 5*I*c)*log(-4*(2*sqrt(2)*(a^3*d*e^(2*I*d*x + 2*I*c) - a^ 
3*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d*x + 2*I*c) + I)/(e 
^(2*I*d*x + 2*I*c) - 1))*sqrt(1/8*I/(a^5*d^2)) - I*a*e^(I*d*x + I*c))*e^(- 
I*d*x - I*c)) - sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((I*e^(2*I*d 
*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) - 1))*(23*e^(6*I*d*x + 6*I*c) - 34*e 
^(4*I*d*x + 4*I*c) + 14*e^(2*I*d*x + 2*I*c) - 3))*e^(-5*I*d*x - 5*I*c)/(a^ 
3*d)
 

Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx=\text {Timed out} \] Input:

integrate(1/cot(d*x+c)**(5/2)/(a+I*a*tan(d*x+c))**(5/2),x)
 

Output:

Timed out
 

Maxima [F(-2)]

Exception generated. \[ \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: RuntimeError} \] Input:

integrate(1/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="maxima 
")
 

Output:

Exception raised: RuntimeError >> ECL says: THROW: The catch RAT-ERR is un 
defined.
                                                                                    
                                                                                    
 

Giac [F(-2)]

Exception generated. \[ \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(1/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Error: Bad Argument TypeError: Bad 
Argument TypeDone
 

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx=\int \frac {1}{{\mathrm {cot}\left (c+d\,x\right )}^{5/2}\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}} \,d x \] Input:

int(1/(cot(c + d*x)^(5/2)*(a + a*tan(c + d*x)*1i)^(5/2)),x)
 

Output:

int(1/(cot(c + d*x)^(5/2)*(a + a*tan(c + d*x)*1i)^(5/2)), x)
 

Reduce [F]

\[ \int \frac {1}{\cot ^{\frac {5}{2}}(c+d x) (a+i a \tan (c+d x))^{5/2}} \, dx=-\frac {\int \frac {1}{\sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right )^{2} \tan \left (d x +c \right )^{2}-2 \sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right )^{2} \tan \left (d x +c \right ) i -\sqrt {\tan \left (d x +c \right ) i +1}\, \sqrt {\cot \left (d x +c \right )}\, \cot \left (d x +c \right )^{2}}d x}{\sqrt {a}\, a^{2}} \] Input:

int(1/cot(d*x+c)^(5/2)/(a+I*a*tan(d*x+c))^(5/2),x)
 

Output:

( - int(1/(sqrt(tan(c + d*x)*i + 1)*sqrt(cot(c + d*x))*cot(c + d*x)**2*tan 
(c + d*x)**2 - 2*sqrt(tan(c + d*x)*i + 1)*sqrt(cot(c + d*x))*cot(c + d*x)* 
*2*tan(c + d*x)*i - sqrt(tan(c + d*x)*i + 1)*sqrt(cot(c + d*x))*cot(c + d* 
x)**2),x))/(sqrt(a)*a**2)