\(\int \frac {\tan ^6(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx\) [177]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 189 \[ \int \frac {\tan ^6(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=-\frac {2 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}-\frac {2 a \tan ^3(c+d x)}{3 d (a+a \sec (c+d x))^{3/2}}+\frac {2 a^2 \tan ^5(c+d x)}{5 d (a+a \sec (c+d x))^{5/2}}+\frac {6 a^3 \tan ^7(c+d x)}{7 d (a+a \sec (c+d x))^{7/2}}+\frac {2 a^4 \tan ^9(c+d x)}{9 d (a+a \sec (c+d x))^{9/2}} \] Output:

-2*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(1/2)/d+2*tan(d*x+c 
)/d/(a+a*sec(d*x+c))^(1/2)-2/3*a*tan(d*x+c)^3/d/(a+a*sec(d*x+c))^(3/2)+2/5 
*a^2*tan(d*x+c)^5/d/(a+a*sec(d*x+c))^(5/2)+6/7*a^3*tan(d*x+c)^7/d/(a+a*sec 
(d*x+c))^(7/2)+2/9*a^4*tan(d*x+c)^9/d/(a+a*sec(d*x+c))^(9/2)
 

Mathematica [A] (warning: unable to verify)

Time = 13.23 (sec) , antiderivative size = 167, normalized size of antiderivative = 0.88 \[ \int \frac {\tan ^6(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {-5040 \arctan \left (\frac {\tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\frac {\cos (c+d x)}{1+\cos (c+d x)}}}\right ) \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {\sec (c+d x)}{(1+\sec (c+d x))^2}} \sqrt {1+\sec (c+d x)}+(901+164 \cos (c+d x)+1004 \cos (2 (c+d x))+68 \cos (3 (c+d x))+383 \cos (4 (c+d x))) \sec ^4(c+d x) \tan (c+d x)}{1260 d \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[Tan[c + d*x]^6/Sqrt[a + a*Sec[c + d*x]],x]
 

Output:

(-5040*ArcTan[Tan[(c + d*x)/2]/Sqrt[Cos[c + d*x]/(1 + Cos[c + d*x])]]*Cos[ 
(c + d*x)/2]^2*Sqrt[Sec[c + d*x]]*Sqrt[Sec[c + d*x]/(1 + Sec[c + d*x])^2]* 
Sqrt[1 + Sec[c + d*x]] + (901 + 164*Cos[c + d*x] + 1004*Cos[2*(c + d*x)] + 
 68*Cos[3*(c + d*x)] + 383*Cos[4*(c + d*x)])*Sec[c + d*x]^4*Tan[c + d*x])/ 
(1260*d*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 178, normalized size of antiderivative = 0.94, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3042, 4375, 364, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^6(c+d x)}{\sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cot \left (c+d x+\frac {\pi }{2}\right )^6}{\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4375

\(\displaystyle -\frac {2 a^3 \int \frac {\tan ^6(c+d x) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )^2}{(\sec (c+d x) a+a)^3 \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\)

\(\Big \downarrow \) 364

\(\displaystyle -\frac {2 a^3 \int \left (\frac {a \tan ^8(c+d x)}{(\sec (c+d x) a+a)^4}+\frac {3 \tan ^6(c+d x)}{(\sec (c+d x) a+a)^3}+\frac {\tan ^4(c+d x)}{a (\sec (c+d x) a+a)^2}-\frac {\tan ^2(c+d x)}{a^2 (\sec (c+d x) a+a)}-\frac {1}{a^3 \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right )}+\frac {1}{a^3}\right )d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 a^3 \left (\frac {\arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{7/2}}-\frac {\tan (c+d x)}{a^3 \sqrt {a \sec (c+d x)+a}}+\frac {\tan ^3(c+d x)}{3 a^2 (a \sec (c+d x)+a)^{3/2}}-\frac {a \tan ^9(c+d x)}{9 (a \sec (c+d x)+a)^{9/2}}-\frac {3 \tan ^7(c+d x)}{7 (a \sec (c+d x)+a)^{7/2}}-\frac {\tan ^5(c+d x)}{5 a (a \sec (c+d x)+a)^{5/2}}\right )}{d}\)

Input:

Int[Tan[c + d*x]^6/Sqrt[a + a*Sec[c + d*x]],x]
 

Output:

(-2*a^3*(ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]/a^(7/2) - 
 Tan[c + d*x]/(a^3*Sqrt[a + a*Sec[c + d*x]]) + Tan[c + d*x]^3/(3*a^2*(a + 
a*Sec[c + d*x])^(3/2)) - Tan[c + d*x]^5/(5*a*(a + a*Sec[c + d*x])^(5/2)) - 
 (3*Tan[c + d*x]^7)/(7*(a + a*Sec[c + d*x])^(7/2)) - (a*Tan[c + d*x]^9)/(9 
*(a + a*Sec[c + d*x])^(9/2))))/d
 

Defintions of rubi rules used

rule 364
Int[(((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_))/((c_) + (d_.)*(x_)^2), 
x_Symbol] :> Int[ExpandIntegrand[(e*x)^m*((a + b*x^2)^p/(c + d*x^2)), x], x 
] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[p, 0] && (In 
tegerQ[m] || IGtQ[2*(m + 1), 0] ||  !RationalQ[m])
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4375
Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n 
_.), x_Symbol] :> Simp[-2*(a^(m/2 + n + 1/2)/d)   Subst[Int[x^m*((2 + a*x^2 
)^(m/2 + n - 1/2)/(1 + a*x^2)), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x] 
]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && I 
ntegerQ[n - 1/2]
 
Maple [A] (verified)

Time = 0.99 (sec) , antiderivative size = 171, normalized size of antiderivative = 0.90

method result size
default \(\frac {2 \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\left (383 \cos \left (d x +c \right )^{4}+34 \cos \left (d x +c \right )^{3}-132 \cos \left (d x +c \right )^{2}-5 \cos \left (d x +c \right )+35\right ) \tan \left (d x +c \right ) \sec \left (d x +c \right )^{3}+315 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{\sqrt {\cot \left (d x +c \right )^{2}-2 \csc \left (d x +c \right ) \cot \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right )\right )}{315 d a \left (1+\cos \left (d x +c \right )\right )}\) \(171\)

Input:

int(tan(d*x+c)^6/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

2/315/d/a*(a*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c))*((383*cos(d*x+c)^4+34*co 
s(d*x+c)^3-132*cos(d*x+c)^2-5*cos(d*x+c)+35)*tan(d*x+c)*sec(d*x+c)^3+315*( 
1+cos(d*x+c))*(-cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctanh(2^(1/2)*(-csc(d*x 
+c)+cot(d*x+c))/(cot(d*x+c)^2-2*csc(d*x+c)*cot(d*x+c)+csc(d*x+c)^2-1)^(1/2 
)))
 

Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 355, normalized size of antiderivative = 1.88 \[ \int \frac {\tan ^6(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\left [-\frac {315 \, {\left (\cos \left (d x + c\right )^{5} + \cos \left (d x + c\right )^{4}\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) - 2 \, {\left (383 \, \cos \left (d x + c\right )^{4} + 34 \, \cos \left (d x + c\right )^{3} - 132 \, \cos \left (d x + c\right )^{2} - 5 \, \cos \left (d x + c\right ) + 35\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{315 \, {\left (a d \cos \left (d x + c\right )^{5} + a d \cos \left (d x + c\right )^{4}\right )}}, \frac {2 \, {\left (315 \, {\left (\cos \left (d x + c\right )^{5} + \cos \left (d x + c\right )^{4}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + {\left (383 \, \cos \left (d x + c\right )^{4} + 34 \, \cos \left (d x + c\right )^{3} - 132 \, \cos \left (d x + c\right )^{2} - 5 \, \cos \left (d x + c\right ) + 35\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )\right )}}{315 \, {\left (a d \cos \left (d x + c\right )^{5} + a d \cos \left (d x + c\right )^{4}\right )}}\right ] \] Input:

integrate(tan(d*x+c)^6/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

[-1/315*(315*(cos(d*x + c)^5 + cos(d*x + c)^4)*sqrt(-a)*log((2*a*cos(d*x + 
 c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*si 
n(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) - 2*(383*cos(d*x + c) 
^4 + 34*cos(d*x + c)^3 - 132*cos(d*x + c)^2 - 5*cos(d*x + c) + 35)*sqrt((a 
*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c)^5 + a*d*c 
os(d*x + c)^4), 2/315*(315*(cos(d*x + c)^5 + cos(d*x + c)^4)*sqrt(a)*arcta 
n(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + 
c))) + (383*cos(d*x + c)^4 + 34*cos(d*x + c)^3 - 132*cos(d*x + c)^2 - 5*co 
s(d*x + c) + 35)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a* 
d*cos(d*x + c)^5 + a*d*cos(d*x + c)^4)]
 

Sympy [F]

\[ \int \frac {\tan ^6(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\tan ^{6}{\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \] Input:

integrate(tan(d*x+c)**6/(a+a*sec(d*x+c))**(1/2),x)
 

Output:

Integral(tan(c + d*x)**6/sqrt(a*(sec(c + d*x) + 1)), x)
 

Maxima [F]

\[ \int \frac {\tan ^6(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {\tan \left (d x + c\right )^{6}}{\sqrt {a \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(tan(d*x+c)^6/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

-1/630*(12*(105*sin(8*d*x + 8*c) + 280*sin(6*d*x + 6*c) + 546*sin(4*d*x + 
4*c) + 312*sin(2*d*x + 2*c))*cos(9/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 
 2*c) + 1)) - 4*(315*cos(8*d*x + 8*c) + 840*cos(6*d*x + 6*c) + 1638*cos(4* 
d*x + 4*c) + 936*cos(2*d*x + 2*c) + 383)*sin(9/2*arctan2(sin(2*d*x + 2*c), 
 cos(2*d*x + 2*c) + 1)) - 315*((cos(2*d*x + 2*c)^4 + sin(2*d*x + 2*c)^4 + 
4*cos(2*d*x + 2*c)^3 + 2*(cos(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*sin 
(2*d*x + 2*c)^2 + 6*cos(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*arctan2(( 
cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*si 
n(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^ 
2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin 
(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) - (cos(2*d*x + 2*c)^4 + sin(2*d 
*x + 2*c)^4 + 4*cos(2*d*x + 2*c)^3 + 2*(cos(2*d*x + 2*c)^2 + 2*cos(2*d*x + 
 2*c) + 1)*sin(2*d*x + 2*c)^2 + 6*cos(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) 
+ 1)*arctan2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) 
 + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos 
(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1 
/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 1) + 2*(a*d*cos(2*d* 
x + 2*c)^4 + a*d*sin(2*d*x + 2*c)^4 + 4*a*d*cos(2*d*x + 2*c)^3 + 6*a*d*cos 
(2*d*x + 2*c)^2 + 4*a*d*cos(2*d*x + 2*c) + 2*(a*d*cos(2*d*x + 2*c)^2 + 2*a 
*d*cos(2*d*x + 2*c) + a*d)*sin(2*d*x + 2*c)^2 + a*d)*integrate(-(cos(2*...
 

Giac [A] (verification not implemented)

Time = 0.67 (sec) , antiderivative size = 266, normalized size of antiderivative = 1.41 \[ \int \frac {\tan ^6(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {2} {\left (\frac {315 \, \sqrt {2} \sqrt {-a} \log \left (\frac {{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right )}{{\left | a \right |}} + \frac {4 \, {\left (315 \, a^{4} - {\left (1470 \, a^{4} - {\left (2772 \, a^{4} + {\left (257 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1314 \, a^{4}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{4} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}\right )}}{630 \, d \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} \] Input:

integrate(tan(d*x+c)^6/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

1/630*sqrt(2)*(315*sqrt(2)*sqrt(-a)*log(abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2* 
c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - 4*sqrt(2)*abs(a) - 6*a)/abs( 
2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 
+ 4*sqrt(2)*abs(a) - 6*a))/abs(a) + 4*(315*a^4 - (1470*a^4 - (2772*a^4 + ( 
257*a^4*tan(1/2*d*x + 1/2*c)^2 - 1314*a^4)*tan(1/2*d*x + 1/2*c)^2)*tan(1/2 
*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)/((a*tan(1/2* 
d*x + 1/2*c)^2 - a)^4*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(d*sgn(cos(d*x 
 + c)))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^6(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {{\mathrm {tan}\left (c+d\,x\right )}^6}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int(tan(c + d*x)^6/(a + a/cos(c + d*x))^(1/2),x)
 

Output:

int(tan(c + d*x)^6/(a + a/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {\tan ^6(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \tan \left (d x +c \right )^{6}}{\sec \left (d x +c \right )+1}d x \right )}{a} \] Input:

int(tan(d*x+c)^6/(a+a*sec(d*x+c))^(1/2),x)
                                                                                    
                                                                                    
 

Output:

(sqrt(a)*int((sqrt(sec(c + d*x) + 1)*tan(c + d*x)**6)/(sec(c + d*x) + 1),x 
))/a