\(\int \frac {\tan ^4(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx\) [178]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 125 \[ \int \frac {\tan ^4(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {2 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}-\frac {2 \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}}+\frac {2 a \tan ^3(c+d x)}{3 d (a+a \sec (c+d x))^{3/2}}+\frac {2 a^2 \tan ^5(c+d x)}{5 d (a+a \sec (c+d x))^{5/2}} \] Output:

2*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(1/2)/d-2*tan(d*x+c) 
/d/(a+a*sec(d*x+c))^(1/2)+2/3*a*tan(d*x+c)^3/d/(a+a*sec(d*x+c))^(3/2)+2/5* 
a^2*tan(d*x+c)^5/d/(a+a*sec(d*x+c))^(5/2)
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 1.83 (sec) , antiderivative size = 238, normalized size of antiderivative = 1.90 \[ \int \frac {\tan ^4(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {16 \sqrt {2} \left (\frac {1}{1+\sec (c+d x)}\right )^{9/2} \left (-\frac {\cos (c+d x) (9+5 \cos (c+d x)) \csc ^6\left (\frac {1}{2} (c+d x)\right ) \sec ^2\left (\frac {1}{2} (c+d x)\right ) \left (30 \text {arctanh}\left (\sqrt {1-\sec (c+d x)}\right ) \cos ^2(c+d x)+(-29+22 \cos (c+d x)-23 \cos (2 (c+d x))) \sqrt {1-\sec (c+d x)}\right )}{480 \sqrt {1-\sec (c+d x)}}-\frac {4}{9} \operatorname {Hypergeometric2F1}\left (2,\frac {9}{2},\frac {11}{2},-2 \sec (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sec (c+d x) \tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \tan ^5(c+d x)}{5 d \sqrt {a (1+\sec (c+d x))} \left (1-\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )^{7/2}} \] Input:

Integrate[Tan[c + d*x]^4/Sqrt[a + a*Sec[c + d*x]],x]
 

Output:

(16*Sqrt[2]*((1 + Sec[c + d*x])^(-1))^(9/2)*(-1/480*(Cos[c + d*x]*(9 + 5*C 
os[c + d*x])*Csc[(c + d*x)/2]^6*Sec[(c + d*x)/2]^2*(30*ArcTanh[Sqrt[1 - Se 
c[c + d*x]]]*Cos[c + d*x]^2 + (-29 + 22*Cos[c + d*x] - 23*Cos[2*(c + d*x)] 
)*Sqrt[1 - Sec[c + d*x]]))/Sqrt[1 - Sec[c + d*x]] - (4*Hypergeometric2F1[2 
, 9/2, 11/2, -2*Sec[c + d*x]*Sin[(c + d*x)/2]^2]*Sec[c + d*x]*Tan[(c + d*x 
)/2]^2)/9)*Tan[c + d*x]^5)/(5*d*Sqrt[a*(1 + Sec[c + d*x])]*(1 - Tan[(c + d 
*x)/2]^2)^(7/2))
 

Rubi [A] (verified)

Time = 0.28 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.98, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3042, 4375, 363, 254, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^4(c+d x)}{\sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cot \left (c+d x+\frac {\pi }{2}\right )^4}{\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4375

\(\displaystyle -\frac {2 a^2 \int \frac {\tan ^4(c+d x) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )}{(\sec (c+d x) a+a)^2 \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\)

\(\Big \downarrow \) 363

\(\displaystyle -\frac {2 a^2 \left (\int \frac {\tan ^4(c+d x)}{(\sec (c+d x) a+a)^2 \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )-\frac {\tan ^5(c+d x)}{5 (a \sec (c+d x)+a)^{5/2}}\right )}{d}\)

\(\Big \downarrow \) 254

\(\displaystyle -\frac {2 a^2 \left (\int \left (\frac {\tan ^2(c+d x)}{a (\sec (c+d x) a+a)}+\frac {1}{a^2 \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right )}-\frac {1}{a^2}\right )d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )-\frac {\tan ^5(c+d x)}{5 (a \sec (c+d x)+a)^{5/2}}\right )}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {2 a^2 \left (-\frac {\arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{5/2}}+\frac {\tan (c+d x)}{a^2 \sqrt {a \sec (c+d x)+a}}-\frac {\tan ^5(c+d x)}{5 (a \sec (c+d x)+a)^{5/2}}-\frac {\tan ^3(c+d x)}{3 a (a \sec (c+d x)+a)^{3/2}}\right )}{d}\)

Input:

Int[Tan[c + d*x]^4/Sqrt[a + a*Sec[c + d*x]],x]
 

Output:

(-2*a^2*(-(ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]/a^(5/2) 
) + Tan[c + d*x]/(a^2*Sqrt[a + a*Sec[c + d*x]]) - Tan[c + d*x]^3/(3*a*(a + 
 a*Sec[c + d*x])^(3/2)) - Tan[c + d*x]^5/(5*(a + a*Sec[c + d*x])^(5/2))))/ 
d
 

Defintions of rubi rules used

rule 254
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Int[PolynomialDivide[x^m, 
 a + b*x^2, x], x] /; FreeQ[{a, b}, x] && IGtQ[m, 3]
 

rule 363
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x 
_Symbol] :> Simp[d*(e*x)^(m + 1)*((a + b*x^2)^(p + 1)/(b*e*(m + 2*p + 3))), 
 x] - Simp[(a*d*(m + 1) - b*c*(m + 2*p + 3))/(b*(m + 2*p + 3))   Int[(e*x)^ 
m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b*c - a*d 
, 0] && NeQ[m + 2*p + 3, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4375
Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n 
_.), x_Symbol] :> Simp[-2*(a^(m/2 + n + 1/2)/d)   Subst[Int[x^m*((2 + a*x^2 
)^(m/2 + n - 1/2)/(1 + a*x^2)), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x] 
]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && I 
ntegerQ[n - 1/2]
 
Maple [A] (verified)

Time = 0.93 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.15

method result size
default \(-\frac {2 \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (17 \sin \left (d x +c \right )+\tan \left (d x +c \right )-3 \sec \left (d x +c \right ) \tan \left (d x +c \right )+15 \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{\sqrt {\cot \left (d x +c \right )^{2}-2 \csc \left (d x +c \right ) \cot \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right )\right )}{15 d a \left (1+\cos \left (d x +c \right )\right )}\) \(144\)

Input:

int(tan(d*x+c)^4/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-2/15/d/a*(a*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c))*(17*sin(d*x+c)+tan(d*x+c 
)-3*sec(d*x+c)*tan(d*x+c)+15*(1+cos(d*x+c))*(-cos(d*x+c)/(1+cos(d*x+c)))^( 
1/2)*arctanh(2^(1/2)*(-csc(d*x+c)+cot(d*x+c))/(cot(d*x+c)^2-2*csc(d*x+c)*c 
ot(d*x+c)+csc(d*x+c)^2-1)^(1/2)))
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 311, normalized size of antiderivative = 2.49 \[ \int \frac {\tan ^4(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\left [-\frac {15 \, {\left (\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (17 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right ) - 3\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{15 \, {\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}}, -\frac {2 \, {\left (15 \, {\left (\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + {\left (17 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right ) - 3\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )\right )}}{15 \, {\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}}\right ] \] Input:

integrate(tan(d*x+c)^4/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

[-1/15*(15*(cos(d*x + c)^3 + cos(d*x + c)^2)*sqrt(-a)*log((2*a*cos(d*x + c 
)^2 + 2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin( 
d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(17*cos(d*x + c)^2 
+ cos(d*x + c) - 3)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/ 
(a*d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2), -2/15*(15*(cos(d*x + c)^3 + cos 
(d*x + c)^2)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d* 
x + c)/(sqrt(a)*sin(d*x + c))) + (17*cos(d*x + c)^2 + cos(d*x + c) - 3)*sq 
rt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c)^3 + 
a*d*cos(d*x + c)^2)]
 

Sympy [F]

\[ \int \frac {\tan ^4(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\tan ^{4}{\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \] Input:

integrate(tan(d*x+c)**4/(a+a*sec(d*x+c))**(1/2),x)
 

Output:

Integral(tan(c + d*x)**4/sqrt(a*(sec(c + d*x) + 1)), x)
 

Maxima [F]

\[ \int \frac {\tan ^4(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {\tan \left (d x + c\right )^{4}}{\sqrt {a \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(tan(d*x+c)^4/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

1/30*(20*(3*sin(4*d*x + 4*c) + 4*sin(2*d*x + 2*c))*cos(5/2*arctan2(sin(2*d 
*x + 2*c), cos(2*d*x + 2*c) + 1)) - 4*(15*cos(4*d*x + 4*c) + 20*cos(2*d*x 
+ 2*c) + 17)*sin(5/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) - 15 
*((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*arcta 
n2((cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4 
)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2 
*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2 
(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)) + 1) - (cos(2*d*x + 2*c)^2 + sin 
(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)*arctan2((cos(2*d*x + 2*c)^2 + si 
n(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x 
 + 2*c), cos(2*d*x + 2*c) + 1)), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 
+ 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d* 
x + 2*c) + 1)) - 1) + 2*(a*d*cos(2*d*x + 2*c)^2 + a*d*sin(2*d*x + 2*c)^2 + 
 2*a*d*cos(2*d*x + 2*c) + a*d)*integrate(-(cos(2*d*x + 2*c)^2 + sin(2*d*x 
+ 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(((cos(10*d*x + 10*c)*cos(2*d*x + 
 2*c) + 4*cos(8*d*x + 8*c)*cos(2*d*x + 2*c) + 6*cos(6*d*x + 6*c)*cos(2*d*x 
 + 2*c) + 4*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(1 
0*d*x + 10*c)*sin(2*d*x + 2*c) + 4*sin(8*d*x + 8*c)*sin(2*d*x + 2*c) + 6*s 
in(6*d*x + 6*c)*sin(2*d*x + 2*c) + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + s 
in(2*d*x + 2*c)^2)*cos(7/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 228 vs. \(2 (109) = 218\).

Time = 0.65 (sec) , antiderivative size = 228, normalized size of antiderivative = 1.82 \[ \int \frac {\tan ^4(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\sqrt {2} {\left (\frac {15 \, \sqrt {2} \sqrt {-a} \log \left (\frac {{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right )}{{\left | a \right |}} + \frac {4 \, {\left ({\left (13 \, a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 40 \, a^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 15 \, a^{2}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}\right )}}{30 \, d \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} \] Input:

integrate(tan(d*x+c)^4/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

-1/30*sqrt(2)*(15*sqrt(2)*sqrt(-a)*log(abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c 
) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - 4*sqrt(2)*abs(a) - 6*a)/abs(2 
*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 
 4*sqrt(2)*abs(a) - 6*a))/abs(a) + 4*((13*a^2*tan(1/2*d*x + 1/2*c)^2 - 40* 
a^2)*tan(1/2*d*x + 1/2*c)^2 + 15*a^2)*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x 
 + 1/2*c)^2 - a)^2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(d*sgn(cos(d*x + 
c)))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^4(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {{\mathrm {tan}\left (c+d\,x\right )}^4}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int(tan(c + d*x)^4/(a + a/cos(c + d*x))^(1/2),x)
 

Output:

int(tan(c + d*x)^4/(a + a/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {\tan ^4(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \tan \left (d x +c \right )^{4}}{\sec \left (d x +c \right )+1}d x \right )}{a} \] Input:

int(tan(d*x+c)^4/(a+a*sec(d*x+c))^(1/2),x)
 

Output:

(sqrt(a)*int((sqrt(sec(c + d*x) + 1)*tan(c + d*x)**4)/(sec(c + d*x) + 1),x 
))/a