\(\int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx\) [180]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 170 \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=-\frac {2 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {7 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{4 \sqrt {2} \sqrt {a} d}-\frac {\cot (c+d x) \sqrt {a+a \sec (c+d x)}}{4 a d}-\frac {\cot (c+d x) \sqrt {a+a \sec (c+d x)}}{2 a d \left (2+\frac {\tan ^2(c+d x)}{1+\sec (c+d x)}\right )} \] Output:

-2*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(1/2)/d+7/8*arctan( 
1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))*2^(1/2)/a^(1/2)/d-1 
/4*cot(d*x+c)*(a+a*sec(d*x+c))^(1/2)/a/d-1/2*cot(d*x+c)*(a+a*sec(d*x+c))^( 
1/2)/a/d/(2+tan(d*x+c)^2/(1+sec(d*x+c)))
 

Mathematica [A] (warning: unable to verify)

Time = 4.00 (sec) , antiderivative size = 187, normalized size of antiderivative = 1.10 \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {-2 (3 \cot (c+d x)+\csc (c+d x))-32 \arctan \left (\frac {\tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\frac {1}{1+\sec (c+d x)}}}\right ) \cos ^2\left (\frac {1}{2} (c+d x)\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {\sec (c+d x)}{(1+\sec (c+d x))^2}} \sqrt {1+\sec (c+d x)}+\frac {14 \arcsin \left (\tan \left (\frac {1}{2} (c+d x)\right )\right ) \sqrt {\sec (c+d x)} \sqrt {\frac {1}{1+\sec (c+d x)}} \sqrt {1+\sec (c+d x)}}{\sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )}}}{8 d \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[Cot[c + d*x]^2/Sqrt[a + a*Sec[c + d*x]],x]
 

Output:

(-2*(3*Cot[c + d*x] + Csc[c + d*x]) - 32*ArcTan[Tan[(c + d*x)/2]/Sqrt[(1 + 
 Sec[c + d*x])^(-1)]]*Cos[(c + d*x)/2]^2*Sqrt[Sec[c + d*x]]*Sqrt[Sec[c + d 
*x]/(1 + Sec[c + d*x])^2]*Sqrt[1 + Sec[c + d*x]] + (14*ArcSin[Tan[(c + d*x 
)/2]]*Sqrt[Sec[c + d*x]]*Sqrt[(1 + Sec[c + d*x])^(-1)]*Sqrt[1 + Sec[c + d* 
x]])/Sqrt[Sec[(c + d*x)/2]^2])/(8*d*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.01, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3042, 4375, 374, 27, 445, 27, 397, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cot ^2(c+d x)}{\sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\cot \left (c+d x+\frac {\pi }{2}\right )^2 \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4375

\(\displaystyle -\frac {2 \int \frac {\cot ^2(c+d x) (\sec (c+d x) a+a)}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )^2}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{a d}\)

\(\Big \downarrow \) 374

\(\displaystyle -\frac {2 \left (\frac {\int \frac {a \cot ^2(c+d x) (\sec (c+d x) a+a) \left (1-\frac {3 a \tan ^2(c+d x)}{\sec (c+d x) a+a}\right )}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{4 a}+\frac {\cot (c+d x) \sqrt {a \sec (c+d x)+a}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )}\right )}{a d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2 \left (\frac {1}{4} \int \frac {\cot ^2(c+d x) (\sec (c+d x) a+a) \left (1-\frac {3 a \tan ^2(c+d x)}{\sec (c+d x) a+a}\right )}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )+\frac {\cot (c+d x) \sqrt {a \sec (c+d x)+a}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )}\right )}{a d}\)

\(\Big \downarrow \) 445

\(\displaystyle -\frac {2 \left (\frac {1}{4} \left (\frac {1}{2} \cot (c+d x) \sqrt {a \sec (c+d x)+a}-\frac {1}{2} \int \frac {a \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+9\right )}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )\right )+\frac {\cot (c+d x) \sqrt {a \sec (c+d x)+a}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )}\right )}{a d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2 \left (\frac {1}{4} \left (\frac {1}{2} \cot (c+d x) \sqrt {a \sec (c+d x)+a}-\frac {1}{2} a \int \frac {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+9}{\left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right ) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )\right )+\frac {\cot (c+d x) \sqrt {a \sec (c+d x)+a}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )}\right )}{a d}\)

\(\Big \downarrow \) 397

\(\displaystyle -\frac {2 \left (\frac {1}{4} \left (\frac {1}{2} \cot (c+d x) \sqrt {a \sec (c+d x)+a}-\frac {1}{2} a \left (8 \int \frac {1}{\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )-7 \int \frac {1}{\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+2}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )\right )\right )+\frac {\cot (c+d x) \sqrt {a \sec (c+d x)+a}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )}\right )}{a d}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {2 \left (\frac {1}{4} \left (\frac {1}{2} \cot (c+d x) \sqrt {a \sec (c+d x)+a}-\frac {1}{2} a \left (\frac {7 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {2} \sqrt {a}}-\frac {8 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{\sqrt {a}}\right )\right )+\frac {\cot (c+d x) \sqrt {a \sec (c+d x)+a}}{4 \left (\frac {a \tan ^2(c+d x)}{a \sec (c+d x)+a}+2\right )}\right )}{a d}\)

Input:

Int[Cot[c + d*x]^2/Sqrt[a + a*Sec[c + d*x]],x]
 

Output:

(-2*((-1/2*(a*((-8*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]] 
)/Sqrt[a] + (7*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d 
*x]])])/(Sqrt[2]*Sqrt[a]))) + (Cot[c + d*x]*Sqrt[a + a*Sec[c + d*x]])/2)/4 
 + (Cot[c + d*x]*Sqrt[a + a*Sec[c + d*x]])/(4*(2 + (a*Tan[c + d*x]^2)/(a + 
 a*Sec[c + d*x])))))/(a*d)
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 374
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-b)*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q 
 + 1)/(a*e*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(e*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[b*c*(m + 1) + 2*(b*c - 
a*d)*(p + 1) + d*b*(m + 2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b, 
c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IntBinomialQ[a, b, 
 c, d, e, m, 2, p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 445
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_ 
.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^2)^(p 
+ 1)*((c + d*x^2)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^2*(m + 1)) 
 Int[(g*x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*f*c*(m + 1) - e*(b*c 
+ a*d)*(m + 2 + 1) - e*2*(b*c*p + a*d*q) - b*e*d*(m + 2*(p + q + 2) + 1)*x^ 
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && LtQ[m, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4375
Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n 
_.), x_Symbol] :> Simp[-2*(a^(m/2 + n + 1/2)/d)   Subst[Int[x^m*((2 + a*x^2 
)^(m/2 + n - 1/2)/(1 + a*x^2)), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x] 
]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && I 
ntegerQ[n - 1/2]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(293\) vs. \(2(145)=290\).

Time = 0.71 (sec) , antiderivative size = 294, normalized size of antiderivative = 1.73

method result size
default \(-\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\left (8 \cos \left (d x +c \right )^{2}+16 \cos \left (d x +c \right )+8\right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{\sqrt {\cot \left (d x +c \right )^{2}-2 \csc \left (d x +c \right ) \cot \left (d x +c \right )+\csc \left (d x +c \right )^{2}-1}}\right )+\left (-7 \cos \left (d x +c \right )^{2}-14 \cos \left (d x +c \right )-7\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )+\left (-3 \cos \left (d x +c \right )^{2}-8 \cos \left (d x +c \right )-5\right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {-\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \cot \left (d x +c \right )+\left (-2 \cos \left (d x +c \right )+2\right ) \cot \left (d x +c \right )\right )}{8 d a \left (1+\cos \left (d x +c \right )\right )^{2}}\) \(294\)

Input:

int(cot(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/8/d/a*(a*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c))^2*((8*cos(d*x+c)^2+16*cos 
(d*x+c)+8)*2^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctanh(2^(1/2)/(c 
ot(d*x+c)^2-2*csc(d*x+c)*cot(d*x+c)+csc(d*x+c)^2-1)^(1/2)*(csc(d*x+c)-cot( 
d*x+c)))+(-7*cos(d*x+c)^2-14*cos(d*x+c)-7)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^ 
(1/2)*ln((-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)-cot(d*x+c)+csc(d*x+c))+(-3*c 
os(d*x+c)^2-8*cos(d*x+c)-5)*2^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*( 
-cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cot(d*x+c)+(-2*cos(d*x+c)+2)*cot(d*x+c))
 

Fricas [A] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 503, normalized size of antiderivative = 2.96 \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\left [-\frac {7 \, \sqrt {2} \sqrt {-a} {\left (\cos \left (d x + c\right ) + 1\right )} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) \sin \left (d x + c\right ) + 8 \, \sqrt {-a} {\left (\cos \left (d x + c\right ) + 1\right )} \log \left (-\frac {8 \, a \cos \left (d x + c\right )^{3} - 4 \, {\left (2 \, \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right ) - 7 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right ) + 1}\right ) \sin \left (d x + c\right ) + 4 \, {\left (3 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{16 \, {\left (a d \cos \left (d x + c\right ) + a d\right )} \sin \left (d x + c\right )}, -\frac {7 \, \sqrt {2} \sqrt {a} {\left (\cos \left (d x + c\right ) + 1\right )} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) \sin \left (d x + c\right ) + 8 \, \sqrt {a} {\left (\cos \left (d x + c\right ) + 1\right )} \arctan \left (\frac {2 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right )}{2 \, a \cos \left (d x + c\right )^{2} + a \cos \left (d x + c\right ) - a}\right ) \sin \left (d x + c\right ) + 2 \, {\left (3 \, \cos \left (d x + c\right )^{2} + \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{8 \, {\left (a d \cos \left (d x + c\right ) + a d\right )} \sin \left (d x + c\right )}\right ] \] Input:

integrate(cot(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

[-1/16*(7*sqrt(2)*sqrt(-a)*(cos(d*x + c) + 1)*log((2*sqrt(2)*sqrt(-a)*sqrt 
((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d* 
x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))*si 
n(d*x + c) + 8*sqrt(-a)*(cos(d*x + c) + 1)*log(-(8*a*cos(d*x + c)^3 - 4*(2 
*cos(d*x + c)^2 - cos(d*x + c))*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x 
 + c))*sin(d*x + c) - 7*a*cos(d*x + c) + a)/(cos(d*x + c) + 1))*sin(d*x + 
c) + 4*(3*cos(d*x + c)^2 + cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x 
 + c)))/((a*d*cos(d*x + c) + a*d)*sin(d*x + c)), -1/8*(7*sqrt(2)*sqrt(a)*( 
cos(d*x + c) + 1)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*c 
os(d*x + c)/(sqrt(a)*sin(d*x + c)))*sin(d*x + c) + 8*sqrt(a)*(cos(d*x + c) 
 + 1)*arctan(2*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c 
)*sin(d*x + c)/(2*a*cos(d*x + c)^2 + a*cos(d*x + c) - a))*sin(d*x + c) + 2 
*(3*cos(d*x + c)^2 + cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c)) 
)/((a*d*cos(d*x + c) + a*d)*sin(d*x + c))]
 

Sympy [F]

\[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\cot ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \] Input:

integrate(cot(d*x+c)**2/(a+a*sec(d*x+c))**(1/2),x)
 

Output:

Integral(cot(c + d*x)**2/sqrt(a*(sec(c + d*x) + 1)), x)
 

Maxima [F]

\[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {\cot \left (d x + c\right )^{2}}{\sqrt {a \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(cot(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

integrate(cot(d*x + c)^2/sqrt(a*sec(d*x + c) + a), x)
 

Giac [A] (verification not implemented)

Time = 0.48 (sec) , antiderivative size = 269, normalized size of antiderivative = 1.58 \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {2} {\left (\frac {8 \, \sqrt {2} \sqrt {-a} \log \left (\frac {{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right )}{{\left | a \right |}} - \frac {7 \, \log \left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{\sqrt {-a}} + \frac {2 \, \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a} + \frac {8 \, \sqrt {-a}}{{\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a}\right )}}{16 \, d \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} \] Input:

integrate(cot(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

1/16*sqrt(2)*(8*sqrt(2)*sqrt(-a)*log(abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) 
- sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - 4*sqrt(2)*abs(a) - 6*a)/abs(2*( 
sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 4 
*sqrt(2)*abs(a) - 6*a))/abs(a) - 7*log((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sq 
rt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/sqrt(-a) + 2*sqrt(-a*tan(1/2*d*x + 1 
/2*c)^2 + a)*tan(1/2*d*x + 1/2*c)/a + 8*sqrt(-a)/((sqrt(-a)*tan(1/2*d*x + 
1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a))/(d*sgn(cos(d*x + c)) 
)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {{\mathrm {cot}\left (c+d\,x\right )}^2}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int(cot(c + d*x)^2/(a + a/cos(c + d*x))^(1/2),x)
 

Output:

int(cot(c + d*x)^2/(a + a/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {\cot ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \cot \left (d x +c \right )^{2}}{\sec \left (d x +c \right )+1}d x \right )}{a} \] Input:

int(cot(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x)
 

Output:

(sqrt(a)*int((sqrt(sec(c + d*x) + 1)*cot(c + d*x)**2)/(sec(c + d*x) + 1),x 
))/a