\(\int \frac {\tan ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx\) [179]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 23, antiderivative size = 63 \[ \int \frac {\tan ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=-\frac {2 \arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 \tan (c+d x)}{d \sqrt {a+a \sec (c+d x)}} \] Output:

-2*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(1/2)/d+2*tan(d*x+c 
)/d/(a+a*sec(d*x+c))^(1/2)
 

Mathematica [A] (warning: unable to verify)

Time = 0.47 (sec) , antiderivative size = 119, normalized size of antiderivative = 1.89 \[ \int \frac {\tan ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {16 \cos ^6\left (\frac {1}{2} (c+d x)\right ) \sec ^4(c+d x) \left (\frac {1}{1+\sec (c+d x)}\right )^{5/2} \left (-\arcsin \left (\frac {\tan \left (\frac {1}{2} (c+d x)\right )}{\sqrt {\frac {1}{1+\cos (c+d x)}}}\right ) \cos (c+d x)+\sqrt {\cos (c+d x)} \sqrt {\frac {1}{1+\cos (c+d x)}} \sin (c+d x)\right )}{d \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[Tan[c + d*x]^2/Sqrt[a + a*Sec[c + d*x]],x]
 

Output:

(16*Cos[(c + d*x)/2]^6*Sec[c + d*x]^4*((1 + Sec[c + d*x])^(-1))^(5/2)*(-(A 
rcSin[Tan[(c + d*x)/2]/Sqrt[(1 + Cos[c + d*x])^(-1)]]*Cos[c + d*x]) + Sqrt 
[Cos[c + d*x]]*Sqrt[(1 + Cos[c + d*x])^(-1)]*Sin[c + d*x]))/(d*Sqrt[a*(1 + 
 Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 0.25 (sec) , antiderivative size = 65, normalized size of antiderivative = 1.03, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3042, 4375, 262, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan ^2(c+d x)}{\sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cot \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4375

\(\displaystyle -\frac {2 a \int \frac {\tan ^2(c+d x)}{(\sec (c+d x) a+a) \left (\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1\right )}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\)

\(\Big \downarrow \) 262

\(\displaystyle -\frac {2 a \left (-\frac {\int \frac {1}{\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}d\left (-\frac {\tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{a}-\frac {\tan (c+d x)}{a \sqrt {a \sec (c+d x)+a}}\right )}{d}\)

\(\Big \downarrow \) 216

\(\displaystyle -\frac {2 a \left (\frac {\arctan \left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{a^{3/2}}-\frac {\tan (c+d x)}{a \sqrt {a \sec (c+d x)+a}}\right )}{d}\)

Input:

Int[Tan[c + d*x]^2/Sqrt[a + a*Sec[c + d*x]],x]
 

Output:

(-2*a*(ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]]/a^(3/2) - T 
an[c + d*x]/(a*Sqrt[a + a*Sec[c + d*x]])))/d
 

Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 262
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x) 
^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] - Simp[a*c^2*((m - 1)/ 
(b*(m + 2*p + 1)))   Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b 
, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c 
, 2, m, p, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4375
Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n 
_.), x_Symbol] :> Simp[-2*(a^(m/2 + n + 1/2)/d)   Subst[Int[x^m*((2 + a*x^2 
)^(m/2 + n - 1/2)/(1 + a*x^2)), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x] 
]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && I 
ntegerQ[n - 1/2]
 
Maple [A] (verified)

Time = 0.79 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.70

method result size
default \(\frac {\left (-\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {2}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )}{\sqrt {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+2 \csc \left (d x +c \right )-2 \cot \left (d x +c \right )\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}}{d a}\) \(107\)

Input:

int(tan(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/d*(-2^(1/2)*arctanh(2^(1/2)/((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(csc 
(d*x+c)-cot(d*x+c)))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)+2*csc(d*x+c)-2*c 
ot(d*x+c))/a*(a*(1+sec(d*x+c)))^(1/2)
 

Fricas [A] (verification not implemented)

Time = 0.09 (sec) , antiderivative size = 235, normalized size of antiderivative = 3.73 \[ \int \frac {\tan ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\left [-\frac {\sqrt {-a} {\left (\cos \left (d x + c\right ) + 1\right )} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) - 2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{a d \cos \left (d x + c\right ) + a d}, \frac {2 \, {\left (\sqrt {a} {\left (\cos \left (d x + c\right ) + 1\right )} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )\right )}}{a d \cos \left (d x + c\right ) + a d}\right ] \] Input:

integrate(tan(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")
 

Output:

[-(sqrt(-a)*(cos(d*x + c) + 1)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt(( 
a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + 
c) - a)/(cos(d*x + c) + 1)) - 2*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*si 
n(d*x + c))/(a*d*cos(d*x + c) + a*d), 2*(sqrt(a)*(cos(d*x + c) + 1)*arctan 
(sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c 
))) + sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + 
 c) + a*d)]
 

Sympy [F]

\[ \int \frac {\tan ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\tan ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \] Input:

integrate(tan(d*x+c)**2/(a+a*sec(d*x+c))**(1/2),x)
 

Output:

Integral(tan(c + d*x)**2/sqrt(a*(sec(c + d*x) + 1)), x)
 

Maxima [F]

\[ \int \frac {\tan ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {\tan \left (d x + c\right )^{2}}{\sqrt {a \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(tan(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")
 

Output:

1/2*((2*a*d*integrate(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 + 2*cos(2* 
d*x + 2*c) + 1)^(1/4)*(((cos(6*d*x + 6*c)*cos(2*d*x + 2*c) + 2*cos(4*d*x + 
 4*c)*cos(2*d*x + 2*c) + cos(2*d*x + 2*c)^2 + sin(6*d*x + 6*c)*sin(2*d*x + 
 2*c) + 2*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*cos(3/2* 
arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + (cos(2*d*x + 2*c)*sin(6*d*x 
 + 6*c) + 2*cos(2*d*x + 2*c)*sin(4*d*x + 4*c) - cos(6*d*x + 6*c)*sin(2*d*x 
 + 2*c) - 2*cos(4*d*x + 4*c)*sin(2*d*x + 2*c))*sin(3/2*arctan2(sin(2*d*x + 
 2*c), cos(2*d*x + 2*c))))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2 
*c) + 1)) + ((cos(2*d*x + 2*c)*sin(6*d*x + 6*c) + 2*cos(2*d*x + 2*c)*sin(4 
*d*x + 4*c) - cos(6*d*x + 6*c)*sin(2*d*x + 2*c) - 2*cos(4*d*x + 4*c)*sin(2 
*d*x + 2*c))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (cos(6 
*d*x + 6*c)*cos(2*d*x + 2*c) + 2*cos(4*d*x + 4*c)*cos(2*d*x + 2*c) + cos(2 
*d*x + 2*c)^2 + sin(6*d*x + 6*c)*sin(2*d*x + 2*c) + 2*sin(4*d*x + 4*c)*sin 
(2*d*x + 2*c) + sin(2*d*x + 2*c)^2)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos( 
2*d*x + 2*c))))*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))/ 
(a*cos(6*d*x + 6*c)^2 + 4*a*cos(4*d*x + 4*c)^2 + 4*a*cos(4*d*x + 4*c)*cos( 
2*d*x + 2*c) + a*cos(2*d*x + 2*c)^2 + a*sin(6*d*x + 6*c)^2 + 4*a*sin(4*d*x 
 + 4*c)^2 + 4*a*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + a*sin(2*d*x + 2*c)^2 + 
 2*(2*a*cos(4*d*x + 4*c) + a*cos(2*d*x + 2*c))*cos(6*d*x + 6*c) + 2*(2*a*s 
in(4*d*x + 4*c) + a*sin(2*d*x + 2*c))*sin(6*d*x + 6*c)), x) - 2*a*d*int...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 187 vs. \(2 (55) = 110\).

Time = 0.62 (sec) , antiderivative size = 187, normalized size of antiderivative = 2.97 \[ \int \frac {\tan ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {2} {\left (\frac {\sqrt {2} \sqrt {-a} \log \left (\frac {{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}{{\left | 2 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + 4 \, \sqrt {2} {\left | a \right |} - 6 \, a \right |}}\right )}{{\left | a \right |}} - \frac {4 \, \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a}\right )}}{2 \, d \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} \] Input:

integrate(tan(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")
 

Output:

1/2*sqrt(2)*(sqrt(2)*sqrt(-a)*log(abs(2*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - s 
qrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - 4*sqrt(2)*abs(a) - 6*a)/abs(2*(sqr 
t(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + 4*sq 
rt(2)*abs(a) - 6*a))/abs(a) - 4*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*tan(1/ 
2*d*x + 1/2*c)/(a*tan(1/2*d*x + 1/2*c)^2 - a))/(d*sgn(cos(d*x + c)))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\tan ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {{\mathrm {tan}\left (c+d\,x\right )}^2}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int(tan(c + d*x)^2/(a + a/cos(c + d*x))^(1/2),x)
 

Output:

int(tan(c + d*x)^2/(a + a/cos(c + d*x))^(1/2), x)
 

Reduce [F]

\[ \int \frac {\tan ^2(c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {a}\, \left (\int \frac {\sqrt {\sec \left (d x +c \right )+1}\, \tan \left (d x +c \right )^{2}}{\sec \left (d x +c \right )+1}d x \right )}{a} \] Input:

int(tan(d*x+c)^2/(a+a*sec(d*x+c))^(1/2),x)
 

Output:

(sqrt(a)*int((sqrt(sec(c + d*x) + 1)*tan(c + d*x)**2)/(sec(c + d*x) + 1),x 
))/a