\(\int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx\) [242]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 180 \[ \int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\frac {a^{5/2} (20 A+19 B) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{4 d}+\frac {a^3 (4 A-9 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{4 d \sqrt {a+a \sec (c+d x)}}+\frac {a^2 (4 A+7 B) \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{4 d}+\frac {a B \sqrt {\sec (c+d x)} (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{2 d} \] Output:

1/4*a^(5/2)*(20*A+19*B)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2)) 
/d+1/4*a^3*(4*A-9*B)*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+ 
1/4*a^2*(4*A+7*B)*sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2)*sin(d*x+c)/d+1/2 
*a*B*sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(3/2)*sin(d*x+c)/d
 

Mathematica [A] (warning: unable to verify)

Time = 1.23 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.76 \[ \int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\frac {a^3 \left (20 A \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) \tan (c+d x)-19 B \arcsin \left (\sqrt {\sec (c+d x)}\right ) \tan (c+d x)+\sqrt {-((-1+\sec (c+d x)) \sec (c+d x))} (8 A \sin (c+d x)+(4 A+11 B+2 B \sec (c+d x)) \tan (c+d x))\right )}{4 d \sqrt {1-\sec (c+d x)} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[((a + a*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x]))/Sqrt[Sec[c + d 
*x]],x]
 

Output:

(a^3*(20*A*ArcSin[Sqrt[1 - Sec[c + d*x]]]*Tan[c + d*x] - 19*B*ArcSin[Sqrt[ 
Sec[c + d*x]]]*Tan[c + d*x] + Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])]*(8 
*A*Sin[c + d*x] + (4*A + 11*B + 2*B*Sec[c + d*x])*Tan[c + d*x])))/(4*d*Sqr 
t[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 1.02 (sec) , antiderivative size = 183, normalized size of antiderivative = 1.02, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.314, Rules used = {3042, 4506, 27, 3042, 4506, 27, 3042, 4503, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^{5/2} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4506

\(\displaystyle \frac {1}{2} \int \frac {(\sec (c+d x) a+a)^{3/2} (a (4 A-B)+a (4 A+7 B) \sec (c+d x))}{2 \sqrt {\sec (c+d x)}}dx+\frac {a B \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{4} \int \frac {(\sec (c+d x) a+a)^{3/2} (a (4 A-B)+a (4 A+7 B) \sec (c+d x))}{\sqrt {\sec (c+d x)}}dx+\frac {a B \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (a (4 A-B)+a (4 A+7 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a B \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 4506

\(\displaystyle \frac {1}{4} \left (\int \frac {\sqrt {\sec (c+d x) a+a} \left ((4 A-9 B) a^2+(20 A+19 B) \sec (c+d x) a^2\right )}{2 \sqrt {\sec (c+d x)}}dx+\frac {a^2 (4 A+7 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {a B \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{4} \left (\frac {1}{2} \int \frac {\sqrt {\sec (c+d x) a+a} \left ((4 A-9 B) a^2+(20 A+19 B) \sec (c+d x) a^2\right )}{\sqrt {\sec (c+d x)}}dx+\frac {a^2 (4 A+7 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {a B \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left (\frac {1}{2} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left ((4 A-9 B) a^2+(20 A+19 B) \csc \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {a^2 (4 A+7 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {a B \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 4503

\(\displaystyle \frac {1}{4} \left (\frac {1}{2} \left (a^2 (20 A+19 B) \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {2 a^3 (4 A-9 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (4 A+7 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {a B \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{4} \left (\frac {1}{2} \left (a^2 (20 A+19 B) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {2 a^3 (4 A-9 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )+\frac {a^2 (4 A+7 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {a B \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 4288

\(\displaystyle \frac {1}{4} \left (\frac {1}{2} \left (\frac {2 a^3 (4 A-9 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {2 a^2 (20 A+19 B) \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )+\frac {a^2 (4 A+7 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {a B \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {1}{4} \left (\frac {a^2 (4 A+7 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}+\frac {1}{2} \left (\frac {2 a^{5/2} (20 A+19 B) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a^3 (4 A-9 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )\right )+\frac {a B \sin (c+d x) \sqrt {\sec (c+d x)} (a \sec (c+d x)+a)^{3/2}}{2 d}\)

Input:

Int[((a + a*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x]))/Sqrt[Sec[c + d*x]],x 
]
 

Output:

(a*B*Sqrt[Sec[c + d*x]]*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(2*d) + ( 
(a^2*(4*A + 7*B)*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x]) 
/d + ((2*a^(5/2)*(20*A + 19*B)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*S 
ec[c + d*x]]])/d + (2*a^3*(4*A - 9*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(d* 
Sqrt[a + a*Sec[c + d*x]]))/2)/4
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4506
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B* 
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m + n))), 
 x] + Simp[1/(d*(m + n))   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x] 
)^n*Simp[a*A*d*(m + n) + B*(b*d*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))* 
Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - 
 a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(327\) vs. \(2(154)=308\).

Time = 4.37 (sec) , antiderivative size = 328, normalized size of antiderivative = 1.82

method result size
default \(-\frac {a^{2} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (A \left (-32 \sin \left (d x +c \right )-16 \tan \left (d x +c \right )\right )+B \left (-44 \tan \left (d x +c \right )-8 \sec \left (d x +c \right ) \tan \left (d x +c \right )\right )+20 \sqrt {2}\, \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) A +19 \sqrt {2}\, \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) B +20 \sqrt {2}\, \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) A +19 \sqrt {2}\, \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) B \right )}{16 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\sec \left (d x +c \right )}}\) \(328\)
parts \(-\frac {A \,a^{2} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (-8 \sin \left (d x +c \right )-4 \tan \left (d x +c \right )+5 \sqrt {2}\, \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+5 \sqrt {2}\, \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )\right )}{4 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\sec \left (d x +c \right )}}+\frac {B \,a^{2} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {\sec \left (d x +c \right )}\, \left (19 \cos \left (d x +c \right ) \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+19 \cos \left (d x +c \right ) \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+\sqrt {2}\, \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (11 \sin \left (d x +c \right )+2 \tan \left (d x +c \right )\right )\right )}{8 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\) \(349\)

Input:

int((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x,method=_RET 
URNVERBOSE)
 

Output:

-1/16/d*a^2*(a*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c))/sec(d*x+c)^(1/2)*(A*(- 
32*sin(d*x+c)-16*tan(d*x+c))+B*(-44*tan(d*x+c)-8*sec(d*x+c)*tan(d*x+c))+20 
*2^(1/2)*(1+cos(d*x+c))*(-2/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(cot(d*x+c)-c 
sc(d*x+c)+1)/(-1/(1+cos(d*x+c)))^(1/2))*A+19*2^(1/2)*(1+cos(d*x+c))*(-2/(1 
+cos(d*x+c)))^(1/2)*arctan(1/2*(cot(d*x+c)-csc(d*x+c)+1)/(-1/(1+cos(d*x+c) 
))^(1/2))*B+20*2^(1/2)*(1+cos(d*x+c))*(-2/(1+cos(d*x+c)))^(1/2)*arctan(1/2 
*(cot(d*x+c)-csc(d*x+c)-1)/(-1/(1+cos(d*x+c)))^(1/2))*A+19*2^(1/2)*(1+cos( 
d*x+c))*(-2/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(cot(d*x+c)-csc(d*x+c)-1)/(-1 
/(1+cos(d*x+c)))^(1/2))*B)
 

Fricas [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 451, normalized size of antiderivative = 2.51 \[ \int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\left [\frac {{\left ({\left (20 \, A + 19 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + {\left (20 \, A + 19 \, B\right )} a^{2} \cos \left (d x + c\right )\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left (8 \, A a^{2} \cos \left (d x + c\right )^{2} + {\left (4 \, A + 11 \, B\right )} a^{2} \cos \left (d x + c\right ) + 2 \, B a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{16 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}, \frac {{\left ({\left (20 \, A + 19 \, B\right )} a^{2} \cos \left (d x + c\right )^{2} + {\left (20 \, A + 19 \, B\right )} a^{2} \cos \left (d x + c\right )\right )} \sqrt {-a} \arctan \left (\frac {{\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{2 \, a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}\right ) + \frac {2 \, {\left (8 \, A a^{2} \cos \left (d x + c\right )^{2} + {\left (4 \, A + 11 \, B\right )} a^{2} \cos \left (d x + c\right ) + 2 \, B a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{8 \, {\left (d \cos \left (d x + c\right )^{2} + d \cos \left (d x + c\right )\right )}}\right ] \] Input:

integrate((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x, algo 
rithm="fricas")
 

Output:

[1/16*(((20*A + 19*B)*a^2*cos(d*x + c)^2 + (20*A + 19*B)*a^2*cos(d*x + c)) 
*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 
2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + 
c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(8*A*a 
^2*cos(d*x + c)^2 + (4*A + 11*B)*a^2*cos(d*x + c) + 2*B*a^2)*sqrt((a*cos(d 
*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c 
)^2 + d*cos(d*x + c)), 1/8*(((20*A + 19*B)*a^2*cos(d*x + c)^2 + (20*A + 19 
*B)*a^2*cos(d*x + c))*sqrt(-a)*arctan(1/2*(cos(d*x + c)^2 - 2*cos(d*x + c) 
)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))/(a*sqrt(cos(d*x + c))*s 
in(d*x + c))) + 2*(8*A*a^2*cos(d*x + c)^2 + (4*A + 11*B)*a^2*cos(d*x + c) 
+ 2*B*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d 
*x + c)))/(d*cos(d*x + c)^2 + d*cos(d*x + c))]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((a+a*sec(d*x+c))**(5/2)*(A+B*sec(d*x+c))/sec(d*x+c)**(1/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 14322 vs. \(2 (154) = 308\).

Time = 3.05 (sec) , antiderivative size = 14322, normalized size of antiderivative = 79.57 \[ \int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\text {Too large to display} \] Input:

integrate((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x, algo 
rithm="maxima")
                                                                                    
                                                                                    
 

Output:

1/16*(4*(8*a^2*cos(1/2*d*x + 1/2*c)^4*sin(1/2*d*x + 1/2*c) + 16*a^2*cos(1/ 
2*d*x + 1/2*c)^2*sin(1/2*d*x + 1/2*c)^3 + 8*a^2*sin(1/2*d*x + 1/2*c)^5 + 5 
*(sqrt(2)*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2* 
sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt( 
2)*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2) 
*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + sqrt(2)*a^2* 
log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/ 
2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*a^2*log(2*c 
os(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 
 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(1/2*d*x + 1/2*c)^4 + 10 
*(sqrt(2)*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2* 
sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt( 
2)*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 + 2*sqrt(2) 
*cos(1/2*d*x + 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) + sqrt(2)*a^2* 
log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/ 
2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2) - sqrt(2)*a^2*log(2*c 
os(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c)^2 - 2*sqrt(2)*cos(1/2*d*x + 
 1/2*c) - 2*sqrt(2)*sin(1/2*d*x + 1/2*c) + 2))*cos(1/2*d*x + 1/2*c)^2*sin( 
1/2*d*x + 1/2*c)^2 + 5*(sqrt(2)*a^2*log(2*cos(1/2*d*x + 1/2*c)^2 + 2*sin(1 
/2*d*x + 1/2*c)^2 + 2*sqrt(2)*cos(1/2*d*x + 1/2*c) + 2*sqrt(2)*sin(1/2*...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 599 vs. \(2 (154) = 308\).

Time = 3.71 (sec) , antiderivative size = 599, normalized size of antiderivative = 3.33 \[ \int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx =\text {Too large to display} \] Input:

integrate((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x, algo 
rithm="giac")
 

Output:

1/8*(16*sqrt(2)*A*a^3*sgn(cos(d*x + c))*tan(1/2*d*x + 1/2*c)/sqrt(a*tan(1/ 
2*d*x + 1/2*c)^2 + a) + (20*A*a^(5/2)*sgn(cos(d*x + c)) + 19*B*a^(5/2)*sgn 
(cos(d*x + c)))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x 
 + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - (20*A*a^(5/2)*sgn(cos(d*x + c) 
) + 19*B*a^(5/2)*sgn(cos(d*x + c)))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) 
- sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3))) + 4*sqrt(2)* 
(12*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^6* 
A*a^(7/2)*sgn(cos(d*x + c)) + 19*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*ta 
n(1/2*d*x + 1/2*c)^2 + a))^6*B*a^(7/2)*sgn(cos(d*x + c)) - 76*(sqrt(a)*tan 
(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4*A*a^(9/2)*sgn(co 
s(d*x + c)) - 171*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2 
*c)^2 + a))^4*B*a^(9/2)*sgn(cos(d*x + c)) + 36*(sqrt(a)*tan(1/2*d*x + 1/2* 
c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*A*a^(11/2)*sgn(cos(d*x + c)) + 
89*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*B 
*a^(11/2)*sgn(cos(d*x + c)) - 4*A*a^(13/2)*sgn(cos(d*x + c)) - 9*B*a^(13/2 
)*sgn(cos(d*x + c)))/((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 
 1/2*c)^2 + a))^4 - 6*(sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 
 1/2*c)^2 + a))^2*a + a^2)^2)/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(5/2))/(1/cos(c + d*x))^(1/ 
2),x)
 

Output:

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(5/2))/(1/cos(c + d*x))^(1/ 
2), x)
 

Reduce [F]

\[ \int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sqrt {\sec (c+d x)}} \, dx=\sqrt {a}\, a^{2} \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )}d x \right ) a +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )d x \right ) a +2 \left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )d x \right ) b +2 \left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}d x \right ) a +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}d x \right ) b \right ) \] Input:

int((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(1/2),x)
 

Output:

sqrt(a)*a**2*(int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x) 
,x)*a + int(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**2,x)*b 
 + int(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x),x)*a + 2*int 
(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x),x)*b + 2*int(sqrt( 
sec(c + d*x))*sqrt(sec(c + d*x) + 1),x)*a + int(sqrt(sec(c + d*x))*sqrt(se 
c(c + d*x) + 1),x)*b)