\(\int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\) [243]

Optimal result
Mathematica [A] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 177 \[ \int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {a^{5/2} (2 A+5 B) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{d}+\frac {a^3 (14 A+3 B) \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}}-\frac {a^2 (2 A-3 B) \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {2 a A (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{3 d \sqrt {\sec (c+d x)}} \] Output:

a^(5/2)*(2*A+5*B)*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/d+1/3 
*a^3*(14*A+3*B)*sec(d*x+c)^(1/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)-1/3*a 
^2*(2*A-3*B)*sec(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2)*sin(d*x+c)/d+2/3*a*A* 
(a+a*sec(d*x+c))^(3/2)*sin(d*x+c)/d/sec(d*x+c)^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (warning: unable to verify)

Time = 0.57 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.75 \[ \int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\frac {a^3 \left (3 (2 A+5 B) \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)+\sqrt {1-\sec (c+d x)} (2 A \sin (c+d x)+(16 A+6 B+3 B \sec (c+d x)) \tan (c+d x))\right )}{3 d \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))} \sqrt {a (1+\sec (c+d x))}} \] Input:

Integrate[((a + a*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x]))/Sec[c + d*x]^( 
3/2),x]
 

Output:

(a^3*(3*(2*A + 5*B)*ArcSin[Sqrt[1 - Sec[c + d*x]]]*Sec[c + d*x]^(3/2)*Sin[ 
c + d*x] + Sqrt[1 - Sec[c + d*x]]*(2*A*Sin[c + d*x] + (16*A + 6*B + 3*B*Se 
c[c + d*x])*Tan[c + d*x])))/(3*d*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])] 
*Sqrt[a*(1 + Sec[c + d*x])])
 

Rubi [A] (verified)

Time = 1.07 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.04, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.314, Rules used = {3042, 4505, 27, 3042, 4506, 27, 3042, 4503, 3042, 4288, 222}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a \sec (c+d x)+a)^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx\)

\(\Big \downarrow \) 4505

\(\displaystyle \frac {2}{3} \int \frac {(\sec (c+d x) a+a)^{3/2} (3 a (2 A+B)-a (2 A-3 B) \sec (c+d x))}{2 \sqrt {\sec (c+d x)}}dx+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \int \frac {(\sec (c+d x) a+a)^{3/2} (3 a (2 A+B)-a (2 A-3 B) \sec (c+d x))}{\sqrt {\sec (c+d x)}}dx+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (3 a (2 A+B)-a (2 A-3 B) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4506

\(\displaystyle \frac {1}{3} \left (\int \frac {\sqrt {\sec (c+d x) a+a} \left ((14 A+3 B) a^2+3 (2 A+5 B) \sec (c+d x) a^2\right )}{2 \sqrt {\sec (c+d x)}}dx-\frac {a^2 (2 A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \int \frac {\sqrt {\sec (c+d x) a+a} \left ((14 A+3 B) a^2+3 (2 A+5 B) \sec (c+d x) a^2\right )}{\sqrt {\sec (c+d x)}}dx-\frac {a^2 (2 A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a} \left ((14 A+3 B) a^2+3 (2 A+5 B) \csc \left (c+d x+\frac {\pi }{2}\right ) a^2\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx-\frac {a^2 (2 A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4503

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \left (3 a^2 (2 A+5 B) \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx+\frac {2 a^3 (14 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )-\frac {a^2 (2 A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \left (3 a^2 (2 A+5 B) \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx+\frac {2 a^3 (14 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )-\frac {a^2 (2 A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 4288

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \left (\frac {2 a^3 (14 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {6 a^2 (2 A+5 B) \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}\right )-\frac {a^2 (2 A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {1}{3} \left (\frac {1}{2} \left (\frac {6 a^{5/2} (2 A+5 B) \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {2 a^3 (14 A+3 B) \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}\right )-\frac {a^2 (2 A-3 B) \sin (c+d x) \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}{d}\right )+\frac {2 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{3 d \sqrt {\sec (c+d x)}}\)

Input:

Int[((a + a*Sec[c + d*x])^(5/2)*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(3/2),x 
]
 

Output:

(2*a*A*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]) + 
 (-((a^2*(2*A - 3*B)*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d 
*x])/d) + ((6*a^(5/2)*(2*A + 5*B)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + 
a*Sec[c + d*x]]])/d + (2*a^3*(14*A + 3*B)*Sqrt[Sec[c + d*x]]*Sin[c + d*x]) 
/(d*Sqrt[a + a*Sec[c + d*x]]))/2)/3
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4503
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
 + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Co 
t[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp 
[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n)   Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[ 
e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a 
*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] && LtQ[n, 0]
 

rule 4505
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot 
[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x] - Sim 
p[b/(a*d*n)   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Sim 
p[a*A*(m - n - 1) - b*B*n - (a*B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] 
/; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0 
] && GtQ[m, 1/2] && LtQ[n, -1]
 

rule 4506
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B* 
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m + n))), 
 x] + Simp[1/(d*(m + n))   Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x] 
)^n*Simp[a*A*d*(m + n) + B*(b*d*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))* 
Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - 
 a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] &&  !LtQ[n, -1]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(331\) vs. \(2(153)=306\).

Time = 4.40 (sec) , antiderivative size = 332, normalized size of antiderivative = 1.88

method result size
default \(\frac {a^{2} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (\sqrt {2}\, A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (-6-6 \sec \left (d x +c \right )\right )+\sqrt {2}\, B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (-15-15 \sec \left (d x +c \right )\right )+\sqrt {2}\, A \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (-6-6 \sec \left (d x +c \right )\right )+\sqrt {2}\, B \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \left (-15-15 \sec \left (d x +c \right )\right )+A \left (8 \sin \left (d x +c \right )+64 \tan \left (d x +c \right )\right )+B \left (24 \tan \left (d x +c \right )+12 \sec \left (d x +c \right ) \tan \left (d x +c \right )\right )\right )}{12 d \left (1+\cos \left (d x +c \right )\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(332\)
parts \(-\frac {A \,a^{2} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (-4 \sin \left (d x +c \right )-32 \tan \left (d x +c \right )+\sqrt {2}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (3+3 \sec \left (d x +c \right )\right )+\sqrt {2}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \left (3+3 \sec \left (d x +c \right )\right )\right )}{6 d \left (1+\cos \left (d x +c \right )\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}-\frac {B \,a^{2} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (-8 \sin \left (d x +c \right )-4 \tan \left (d x +c \right )+5 \sqrt {2}\, \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )+5 \sqrt {2}\, \left (1+\cos \left (d x +c \right )\right ) \sqrt {-\frac {2}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{1+\cos \left (d x +c \right )}}}\right )\right )}{4 d \left (1+\cos \left (d x +c \right )\right ) \sqrt {\sec \left (d x +c \right )}}\) \(356\)

Input:

int((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x,method=_RET 
URNVERBOSE)
 

Output:

1/12/d*a^2*(a*(1+sec(d*x+c)))^(1/2)/(1+cos(d*x+c))/sec(d*x+c)^(3/2)*(2^(1/ 
2)*A*(-2/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(cot(d*x+c)-csc(d*x+c)+1)/(-1/(1 
+cos(d*x+c)))^(1/2))*(-6-6*sec(d*x+c))+2^(1/2)*B*(-2/(1+cos(d*x+c)))^(1/2) 
*arctan(1/2*(cot(d*x+c)-csc(d*x+c)+1)/(-1/(1+cos(d*x+c)))^(1/2))*(-15-15*s 
ec(d*x+c))+2^(1/2)*A*(-2/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(cot(d*x+c)-csc( 
d*x+c)-1)/(-1/(1+cos(d*x+c)))^(1/2))*(-6-6*sec(d*x+c))+2^(1/2)*B*(-2/(1+co 
s(d*x+c)))^(1/2)*arctan(1/2*(cot(d*x+c)-csc(d*x+c)-1)/(-1/(1+cos(d*x+c)))^ 
(1/2))*(-15-15*sec(d*x+c))+A*(8*sin(d*x+c)+64*tan(d*x+c))+B*(24*tan(d*x+c) 
+12*sec(d*x+c)*tan(d*x+c)))
 

Fricas [A] (verification not implemented)

Time = 0.15 (sec) , antiderivative size = 421, normalized size of antiderivative = 2.38 \[ \int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\left [\frac {3 \, {\left ({\left (2 \, A + 5 \, B\right )} a^{2} \cos \left (d x + c\right ) + {\left (2 \, A + 5 \, B\right )} a^{2}\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) + \frac {4 \, {\left (2 \, A a^{2} \cos \left (d x + c\right )^{2} + 2 \, {\left (8 \, A + 3 \, B\right )} a^{2} \cos \left (d x + c\right ) + 3 \, B a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{12 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, \frac {3 \, {\left ({\left (2 \, A + 5 \, B\right )} a^{2} \cos \left (d x + c\right ) + {\left (2 \, A + 5 \, B\right )} a^{2}\right )} \sqrt {-a} \arctan \left (\frac {{\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}}{2 \, a \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}\right ) + \frac {2 \, {\left (2 \, A a^{2} \cos \left (d x + c\right )^{2} + 2 \, {\left (8 \, A + 3 \, B\right )} a^{2} \cos \left (d x + c\right ) + 3 \, B a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \] Input:

integrate((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algo 
rithm="fricas")
 

Output:

[1/12*(3*((2*A + 5*B)*a^2*cos(d*x + c) + (2*A + 5*B)*a^2)*sqrt(a)*log((a*c 
os(d*x + c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*s 
qrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + 
 c)) + 8*a)/(cos(d*x + c)^3 + cos(d*x + c)^2)) + 4*(2*A*a^2*cos(d*x + c)^2 
 + 2*(8*A + 3*B)*a^2*cos(d*x + c) + 3*B*a^2)*sqrt((a*cos(d*x + c) + a)/cos 
(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d), 1/6*(3*( 
(2*A + 5*B)*a^2*cos(d*x + c) + (2*A + 5*B)*a^2)*sqrt(-a)*arctan(1/2*(cos(d 
*x + c)^2 - 2*cos(d*x + c))*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c 
))/(a*sqrt(cos(d*x + c))*sin(d*x + c))) + 2*(2*A*a^2*cos(d*x + c)^2 + 2*(8 
*A + 3*B)*a^2*cos(d*x + c) + 3*B*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + 
c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(d*cos(d*x + c) + d)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \] Input:

integrate((a+a*sec(d*x+c))**(5/2)*(A+B*sec(d*x+c))/sec(d*x+c)**(3/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 12088 vs. \(2 (153) = 306\).

Time = 0.39 (sec) , antiderivative size = 12088, normalized size of antiderivative = 68.29 \[ \int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\text {Too large to display} \] Input:

integrate((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algo 
rithm="maxima")
 

Output:

1/12*(sqrt(2)*(30*a^2*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 
3/2*c)))*sin(3/2*d*x + 3/2*c) - 30*a^2*cos(3/2*d*x + 3/2*c)*sin(2/3*arctan 
2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 3*sqrt(2)*a^2*log(2*cos(1 
/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arct 
an2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos(1/3*arc 
tan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2)*sin(1/3*arct 
an2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - 3*sqrt(2)*a^2*log( 
2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1 
/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sqrt(2)*cos( 
1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2*sqrt(2)*sin(1 
/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) + 3*sqrt(2)*a 
^2*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 
2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sqrt( 
2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2*sqrt(2 
)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) - 3*sq 
rt(2)*a^2*log(2*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c) 
))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 
2*sqrt(2)*cos(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 2 
*sqrt(2)*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) + 2) 
 + 4*a^2*sin(3/2*d*x + 3/2*c) + 30*a^2*sin(1/3*arctan2(sin(3/2*d*x + 3/...
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 414 vs. \(2 (153) = 306\).

Time = 2.10 (sec) , antiderivative size = 414, normalized size of antiderivative = 2.34 \[ \int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx =\text {Too large to display} \] Input:

integrate((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x, algo 
rithm="giac")
 

Output:

1/6*(3*(2*A*a^(5/2)*sgn(cos(d*x + c)) + 5*B*a^(5/2)*sgn(cos(d*x + c)))*log 
(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 
 - a*(2*sqrt(2) + 3))) - 3*(2*A*a^(5/2)*sgn(cos(d*x + c)) + 5*B*a^(5/2)*sg 
n(cos(d*x + c)))*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d* 
x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3))) + 4*(9*sqrt(2)*A*a^4*sgn(cos(d* 
x + c)) + 3*sqrt(2)*B*a^4*sgn(cos(d*x + c)) + (7*sqrt(2)*A*a^4*sgn(cos(d*x 
 + c)) + 3*sqrt(2)*B*a^4*sgn(cos(d*x + c)))*tan(1/2*d*x + 1/2*c)^2)*tan(1/ 
2*d*x + 1/2*c)/(a*tan(1/2*d*x + 1/2*c)^2 + a)^(3/2) + 12*(3*sqrt(2)*(sqrt( 
a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*B*a^(7/2)* 
sgn(cos(d*x + c)) - sqrt(2)*B*a^(9/2)*sgn(cos(d*x + c)))/((sqrt(a)*tan(1/2 
*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(a)*tan(1/2 
*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2*a + a^2))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(5/2))/(1/cos(c + d*x))^(3/ 
2),x)
 

Output:

int(((A + B/cos(c + d*x))*(a + a/cos(c + d*x))^(5/2))/(1/cos(c + d*x))^(3/ 
2), x)
 

Reduce [F]

\[ \int \frac {(a+a \sec (c+d x))^{5/2} (A+B \sec (c+d x))}{\sec ^{\frac {3}{2}}(c+d x)} \, dx=\sqrt {a}\, a^{2} \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{2}}d x \right ) a +2 \left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )}d x \right ) a +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}d x \right ) a +2 \left (\int \sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}d x \right ) b \right ) \] Input:

int((a+a*sec(d*x+c))^(5/2)*(A+B*sec(d*x+c))/sec(d*x+c)^(3/2),x)
 

Output:

sqrt(a)*a**2*(int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x) 
**2,x)*a + 2*int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x), 
x)*a + int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/sec(c + d*x),x)*b + 
 int(sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x),x)*b + int(sqr 
t(sec(c + d*x))*sqrt(sec(c + d*x) + 1),x)*a + 2*int(sqrt(sec(c + d*x))*sqr 
t(sec(c + d*x) + 1),x)*b)