\(\int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\) [617]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 150 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=-\frac {2 (A b-a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{a d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 A \sqrt {\cos (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{a d \sqrt {\frac {b+a \cos (c+d x)}{a+b}}} \] Output:

-2*(A*b-B*a)*((b+a*cos(d*x+c))/(a+b))^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c, 
2^(1/2)*(a/(a+b))^(1/2))/a/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2*A*c 
os(d*x+c)^(1/2)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b 
*sec(d*x+c))^(1/2)/a/d/((b+a*cos(d*x+c))/(a+b))^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 6.46 (sec) , antiderivative size = 260, normalized size of antiderivative = 1.73 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\frac {2 \sqrt {\cos (c+d x)} \sqrt {\cos ^2\left (\frac {1}{2} (c+d x)\right ) \sec (c+d x)} (A+B \sec (c+d x)) \left (i A (a+b) E\left (i \text {arcsinh}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right )|\frac {-a+b}{a+b}\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}-i a (A+B) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\tan \left (\frac {1}{2} (c+d x)\right )\right ),\frac {-a+b}{a+b}\right ) \sqrt {\frac {(b+a \cos (c+d x)) \sec ^2\left (\frac {1}{2} (c+d x)\right )}{a+b}}+A (b+a \cos (c+d x)) \sqrt {\sec ^2\left (\frac {1}{2} (c+d x)\right )} \tan \left (\frac {1}{2} (c+d x)\right )\right )}{a d (B+A \cos (c+d x)) \sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \] Input:

Integrate[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x]))/Sqrt[a + b*Sec[c + d*x 
]],x]
 

Output:

(2*Sqrt[Cos[c + d*x]]*Sqrt[Cos[(c + d*x)/2]^2*Sec[c + d*x]]*(A + B*Sec[c + 
 d*x])*(I*A*(a + b)*EllipticE[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(a + b 
)]*Sqrt[((b + a*Cos[c + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] - I*a*(A + B)*E 
llipticF[I*ArcSinh[Tan[(c + d*x)/2]], (-a + b)/(a + b)]*Sqrt[((b + a*Cos[c 
 + d*x])*Sec[(c + d*x)/2]^2)/(a + b)] + A*(b + a*Cos[c + d*x])*Sqrt[Sec[(c 
 + d*x)/2]^2]*Tan[(c + d*x)/2]))/(a*d*(B + A*Cos[c + d*x])*Sqrt[Sec[c + d* 
x]]*Sqrt[a + b*Sec[c + d*x]])
 

Rubi [A] (verified)

Time = 1.34 (sec) , antiderivative size = 171, normalized size of antiderivative = 1.14, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 3434, 3042, 4523, 3042, 4343, 3042, 3134, 3042, 3132, 4345, 3042, 3142, 3042, 3140}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3434

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {A+B \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4523

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {A \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}}dx}{a}-\frac {(A b-a B) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}}dx}{a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {A \int \frac {\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}-\frac {(A b-a B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )\)

\(\Big \downarrow \) 4343

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {A \sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \cos (c+d x)}dx}{a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}-\frac {(A b-a B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {A \sqrt {a+b \sec (c+d x)} \int \sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b}}-\frac {(A b-a B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )\)

\(\Big \downarrow \) 3134

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {A \sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}dx}{a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {(A b-a B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {A \sqrt {a+b \sec (c+d x)} \int \sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}dx}{a \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {(A b-a B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )\)

\(\Big \downarrow \) 3132

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {(A b-a B) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx}{a}\right )\)

\(\Big \downarrow \) 4345

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {(A b-a B) \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \cos (c+d x)}}dx}{a \sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {(A b-a B) \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{a \sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3142

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {(A b-a B) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}}dx}{a \sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {(A b-a B) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{a \sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3140

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{a d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}-\frac {2 (A b-a B) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{a d \sqrt {a+b \sec (c+d x)}}\right )\)

Input:

Int[(Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x]))/Sqrt[a + b*Sec[c + d*x]],x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((-2*(A*b - a*B)*Sqrt[(b + a*Cos[c + 
 d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/ 
(a*d*Sqrt[a + b*Sec[c + d*x]]) + (2*A*EllipticE[(c + d*x)/2, (2*a)/(a + b) 
]*Sqrt[a + b*Sec[c + d*x]])/(a*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[S 
ec[c + d*x]]))
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3132
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a 
 + b]/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, 
b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3134
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + 
b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c + d*x])/(a + b)]   Int[Sqrt[a/(a + b) + ( 
b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2 
, 0] &&  !GtQ[a + b, 0]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3434
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]* 
(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Sim 
p[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p   Int[(a + b*Csc[e + f*x])^m*((c + 
d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g 
, m, n, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && I 
ntegerQ[n])
 

rule 4343
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[Sqrt[a + b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*S 
qrt[b + a*Sin[e + f*x]])   Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[{a 
, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4345
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[Sqrt[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/S 
qrt[a + b*Csc[e + f*x]])   Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[ 
{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4523
Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d 
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Simp[A/a   I 
nt[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Simp[(A*b - a*B) 
/(a*d)   Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ 
[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(494\) vs. \(2(147)=294\).

Time = 3.73 (sec) , antiderivative size = 495, normalized size of antiderivative = 3.30

method result size
default \(\frac {2 \left (\left (1+\cos \left (d x +c \right )\right ) A \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a \operatorname {EllipticE}\left (\sqrt {\frac {a -b}{a +b}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right )+\left (-\cos \left (d x +c \right )-1\right ) A \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, b \operatorname {EllipticE}\left (\sqrt {\frac {a -b}{a +b}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right )+\left (-\cos \left (d x +c \right )-1\right ) A \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a \operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right )+\left (1+\cos \left (d x +c \right )\right ) B \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, a \operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right )+A \sqrt {\frac {a -b}{a +b}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, a \cos \left (d x +c \right ) \sin \left (d x +c \right )+A \sqrt {\frac {a -b}{a +b}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, b \sin \left (d x +c \right )\right ) \sqrt {\cos \left (d x +c \right )}\, \sqrt {a +b \sec \left (d x +c \right )}}{d \sqrt {\frac {a -b}{a +b}}\, \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, a \left (\cos \left (d x +c \right )^{2} a +a \cos \left (d x +c \right )+\cos \left (d x +c \right ) b +b \right )}\) \(495\)
risch \(\text {Expression too large to display}\) \(1140\)

Input:

int(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(1/2),x,method=_RET 
URNVERBOSE)
 

Output:

2/d*((1+cos(d*x+c))*A*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*El 
lipticE(((a-b)/(a+b))^(1/2)*(csc(d*x+c)-cot(d*x+c)),(-(a+b)/(a-b))^(1/2))+ 
(-cos(d*x+c)-1)*A*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*b*Ellipt 
icE(((a-b)/(a+b))^(1/2)*(csc(d*x+c)-cot(d*x+c)),(-(a+b)/(a-b))^(1/2))+(-co 
s(d*x+c)-1)*A*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*EllipticF( 
((a-b)/(a+b))^(1/2)*(csc(d*x+c)-cot(d*x+c)),(-(a+b)/(a-b))^(1/2))+(1+cos(d 
*x+c))*B*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)))^(1/2)*a*EllipticF(((a-b 
)/(a+b))^(1/2)*(csc(d*x+c)-cot(d*x+c)),(-(a+b)/(a-b))^(1/2))+A*((a-b)/(a+b 
))^(1/2)*(1/(1+cos(d*x+c)))^(1/2)*a*cos(d*x+c)*sin(d*x+c)+A*((a-b)/(a+b))^ 
(1/2)*(1/(1+cos(d*x+c)))^(1/2)*b*sin(d*x+c))*cos(d*x+c)^(1/2)*(a+b*sec(d*x 
+c))^(1/2)/((a-b)/(a+b))^(1/2)/(1/(1+cos(d*x+c)))^(1/2)/a/(cos(d*x+c)^2*a+ 
a*cos(d*x+c)+cos(d*x+c)*b+b)
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 371, normalized size of antiderivative = 2.47 \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=-\frac {2 \, {\left (-3 i \, \sqrt {\frac {1}{2}} A a^{\frac {3}{2}} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) + 3 i \, \sqrt {\frac {1}{2}} A a^{\frac {3}{2}} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) + \sqrt {\frac {1}{2}} {\left (3 i \, B a - 2 i \, A b\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + \sqrt {\frac {1}{2}} {\left (-3 i \, B a + 2 i \, A b\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right )}}{3 \, a^{2} d} \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(1/2),x, algo 
rithm="fricas")
 

Output:

-2/3*(-3*I*sqrt(1/2)*A*a^(3/2)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8 
/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8 
/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2* 
b)/a)) + 3*I*sqrt(1/2)*A*a^(3/2)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 
 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 
 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 
2*b)/a)) + sqrt(1/2)*(3*I*B*a - 2*I*A*b)*sqrt(a)*weierstrassPInverse(-4/3* 
(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3 
*I*a*sin(d*x + c) + 2*b)/a) + sqrt(1/2)*(-3*I*B*a + 2*I*A*b)*sqrt(a)*weier 
strassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*( 
3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a))/(a^2*d)
 

Sympy [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sqrt {\cos {\left (c + d x \right )}}}{\sqrt {a + b \sec {\left (c + d x \right )}}}\, dx \] Input:

integrate(cos(d*x+c)**(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))**(1/2),x)
 

Output:

Integral((A + B*sec(c + d*x))*sqrt(cos(c + d*x))/sqrt(a + b*sec(c + d*x)), 
 x)
                                                                                    
                                                                                    
 

Maxima [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(1/2),x, algo 
rithm="maxima")
 

Output:

integrate((B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/sqrt(b*sec(d*x + c) + a) 
, x)
 

Giac [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}}{\sqrt {b \sec \left (d x + c\right ) + a}} \,d x } \] Input:

integrate(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(1/2),x, algo 
rithm="giac")
 

Output:

integrate((B*sec(d*x + c) + A)*sqrt(cos(d*x + c))/sqrt(b*sec(d*x + c) + a) 
, x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\sqrt {\cos \left (c+d\,x\right )}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )}{\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x)))/(a + b/cos(c + d*x))^(1/2),x 
)
 

Output:

int((cos(c + d*x)^(1/2)*(A + B/cos(c + d*x)))/(a + b/cos(c + d*x))^(1/2), 
x)
 

Reduce [F]

\[ \int \frac {\sqrt {\cos (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}} \, dx=\int \sqrt {\sec \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}d x \] Input:

int(cos(d*x+c)^(1/2)*(A+B*sec(d*x+c))/(a+b*sec(d*x+c))^(1/2),x)
 

Output:

int(sqrt(sec(c + d*x)*b + a)*sqrt(cos(c + d*x)),x)