\(\int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx\) [618]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [F(-1)]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 35, antiderivative size = 138 \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\frac {2 A \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}}+\frac {2 B \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \] Output:

2*A*((b+a*cos(d*x+c))/(a+b))^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1/2)*( 
a/(a+b))^(1/2))/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)+2*B*((b+a*cos(d* 
x+c))/(a+b))^(1/2)*EllipticPi(sin(1/2*d*x+1/2*c),2,2^(1/2)*(a/(a+b))^(1/2) 
)/d/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2)
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 29.20 (sec) , antiderivative size = 9363, normalized size of antiderivative = 67.85 \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\text {Result too large to show} \] Input:

Integrate[(A + B*Sec[c + d*x])/(Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x] 
]),x]
 

Output:

Result too large to show
 

Rubi [A] (verified)

Time = 1.42 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.15, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 3434, 3042, 4524, 3042, 4345, 3042, 3142, 3042, 3140, 4346, 3042, 3286, 3042, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+B \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3434

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x))}{\sqrt {a+b \sec (c+d x)}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 4524

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (A \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}}dx+B \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{\sqrt {a+b \sec (c+d x)}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (A \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+B \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\)

\(\Big \downarrow \) 4345

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {A \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \cos (c+d x)}}dx}{\sqrt {a+b \sec (c+d x)}}+B \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {A \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sqrt {a+b \sec (c+d x)}}+B \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\)

\(\Big \downarrow \) 3142

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {A \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \sec (c+d x)}}+B \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {A \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \sec (c+d x)}}+B \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )\)

\(\Big \downarrow \) 3140

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (B \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}{\sqrt {a+b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 A \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 4346

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {B \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {\sec (c+d x)}{\sqrt {b+a \cos (c+d x)}}dx}{\sqrt {a+b \sec (c+d x)}}+\frac {2 A \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {B \sqrt {\sec (c+d x)} \sqrt {a \cos (c+d x)+b} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {b+a \sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{\sqrt {a+b \sec (c+d x)}}+\frac {2 A \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3286

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {B \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {\sec (c+d x)}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}}dx}{\sqrt {a+b \sec (c+d x)}}+\frac {2 A \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {B \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right ) \sqrt {\frac {b}{a+b}+\frac {a \sin \left (c+d x+\frac {\pi }{2}\right )}{a+b}}}dx}{\sqrt {a+b \sec (c+d x)}}+\frac {2 A \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\right )\)

\(\Big \downarrow \) 3284

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 A \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}+\frac {2 B \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticPi}\left (2,\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{d \sqrt {a+b \sec (c+d x)}}\right )\)

Input:

Int[(A + B*Sec[c + d*x])/(Sqrt[Cos[c + d*x]]*Sqrt[a + b*Sec[c + d*x]]),x]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*A*Sqrt[(b + a*Cos[c + d*x])/(a + 
 b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a + 
 b*Sec[c + d*x]]) + (2*B*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticPi[2, 
(c + d*x)/2, (2*a)/(a + b)]*Sqrt[Sec[c + d*x]])/(d*Sqrt[a + b*Sec[c + d*x] 
]))
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3140
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*S 
qrt[a + b]))*EllipticF[(1/2)*(c - Pi/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[ 
{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
 

rule 3142
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a 
 + b*Sin[c + d*x])/(a + b)]/Sqrt[a + b*Sin[c + d*x]]   Int[1/Sqrt[a/(a + b) 
 + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - 
 b^2, 0] &&  !GtQ[a + b, 0]
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3286
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt 
[c + d*Sin[e + f*x]]   Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d/(c + 
 d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !GtQ[c + d, 0]
 

rule 3434
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]* 
(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Sim 
p[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p   Int[(a + b*Csc[e + f*x])^m*((c + 
d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g 
, m, n, p}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[p] &&  !(IntegerQ[m] && I 
ntegerQ[n])
 

rule 4345
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[Sqrt[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/S 
qrt[a + b*Csc[e + f*x]])   Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; FreeQ[ 
{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4346
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_. 
) + (a_)], x_Symbol] :> Simp[d*Sqrt[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x 
]]/Sqrt[a + b*Csc[e + f*x]])   Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e + f*x]] 
), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
 

rule 4524
Int[(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + ( 
A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[A   Int 
[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B/d   Int[(d* 
Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, 
f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 3.60 (sec) , antiderivative size = 245, normalized size of antiderivative = 1.78

method result size
default \(\frac {2 \left (A \operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right )-B \operatorname {EllipticF}\left (\sqrt {\frac {a -b}{a +b}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), \sqrt {-\frac {a +b}{a -b}}\right )+2 B \operatorname {EllipticPi}\left (\sqrt {\frac {a -b}{a +b}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), \frac {a +b}{a -b}, \frac {i}{\sqrt {\frac {a -b}{a +b}}}\right )\right ) \sqrt {\frac {b +a \cos \left (d x +c \right )}{\left (a +b \right ) \left (1+\cos \left (d x +c \right )\right )}}\, \sqrt {a +b \sec \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )}}{d \left (b +a \cos \left (d x +c \right )\right ) \sqrt {\frac {1}{1+\cos \left (d x +c \right )}}\, \sqrt {\frac {a -b}{a +b}}}\) \(245\)

Input:

int((A+B*sec(d*x+c))/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x,method=_RET 
URNVERBOSE)
 

Output:

2/d*(A*EllipticF(((a-b)/(a+b))^(1/2)*(csc(d*x+c)-cot(d*x+c)),(-(a+b)/(a-b) 
)^(1/2))-B*EllipticF(((a-b)/(a+b))^(1/2)*(csc(d*x+c)-cot(d*x+c)),(-(a+b)/( 
a-b))^(1/2))+2*B*EllipticPi(((a-b)/(a+b))^(1/2)*(csc(d*x+c)-cot(d*x+c)),(a 
+b)/(a-b),I/((a-b)/(a+b))^(1/2)))*(1/(a+b)*(b+a*cos(d*x+c))/(1+cos(d*x+c)) 
)^(1/2)*(a+b*sec(d*x+c))^(1/2)*cos(d*x+c)^(1/2)/(b+a*cos(d*x+c))/(1/(1+cos 
(d*x+c)))^(1/2)/((a-b)/(a+b))^(1/2)
 

Fricas [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\text {Timed out} \] Input:

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algo 
rithm="fricas")
 

Output:

Timed out
 

Sympy [F]

\[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {A + B \sec {\left (c + d x \right )}}{\sqrt {a + b \sec {\left (c + d x \right )}} \sqrt {\cos {\left (c + d x \right )}}}\, dx \] Input:

integrate((A+B*sec(d*x+c))/cos(d*x+c)**(1/2)/(a+b*sec(d*x+c))**(1/2),x)
 

Output:

Integral((A + B*sec(c + d*x))/(sqrt(a + b*sec(c + d*x))*sqrt(cos(c + d*x)) 
), x)
 

Maxima [F]

\[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{\sqrt {b \sec \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algo 
rithm="maxima")
 

Output:

integrate((B*sec(d*x + c) + A)/(sqrt(b*sec(d*x + c) + a)*sqrt(cos(d*x + c) 
)), x)
 

Giac [F]

\[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\int { \frac {B \sec \left (d x + c\right ) + A}{\sqrt {b \sec \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}} \,d x } \] Input:

integrate((A+B*sec(d*x+c))/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x, algo 
rithm="giac")
 

Output:

integrate((B*sec(d*x + c) + A)/(sqrt(b*sec(d*x + c) + a)*sqrt(cos(d*x + c) 
)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {A+\frac {B}{\cos \left (c+d\,x\right )}}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}} \,d x \] Input:

int((A + B/cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + b/cos(c + d*x))^(1/2)),x 
)
 

Output:

int((A + B/cos(c + d*x))/(cos(c + d*x)^(1/2)*(a + b/cos(c + d*x))^(1/2)), 
x)
 

Reduce [F]

\[ \int \frac {A+B \sec (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx=\int \frac {\sqrt {\sec \left (d x +c \right ) b +a}\, \sqrt {\cos \left (d x +c \right )}}{\cos \left (d x +c \right )}d x \] Input:

int((A+B*sec(d*x+c))/cos(d*x+c)^(1/2)/(a+b*sec(d*x+c))^(1/2),x)
 

Output:

int((sqrt(sec(c + d*x)*b + a)*sqrt(cos(c + d*x)))/cos(c + d*x),x)