\(\int (b \sec (c+d x))^{3/2} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [65]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 178 \[ \int (b \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 b^2 (5 A+3 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 b B \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {2 b (5 A+3 C) \sqrt {b \sec (c+d x)} \sin (c+d x)}{5 d}+\frac {2 B (b \sec (c+d x))^{3/2} \sin (c+d x)}{3 d}+\frac {2 C (b \sec (c+d x))^{3/2} \tan (c+d x)}{5 d} \] Output:

-2/5*b^2*(5*A+3*C)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos(d*x+c)^(1/2 
)/(b*sec(d*x+c))^(1/2)+2/3*b*B*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/ 
2*c,2^(1/2))*(b*sec(d*x+c))^(1/2)/d+2/5*b*(5*A+3*C)*(b*sec(d*x+c))^(1/2)*s 
in(d*x+c)/d+2/3*B*(b*sec(d*x+c))^(3/2)*sin(d*x+c)/d+2/5*C*(b*sec(d*x+c))^( 
3/2)*tan(d*x+c)/d
 

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 4.96 (sec) , antiderivative size = 308, normalized size of antiderivative = 1.73 \[ \int (b \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {2 e^{-i c} \left (-1+e^{2 i c}\right ) \cos ^3(c+d x) \csc (c) \left (5 B-15 A e^{i (c+d x)}-3 C e^{i (c+d x)}-30 A e^{3 i (c+d x)}-24 C e^{3 i (c+d x)}-5 B e^{4 i (c+d x)}-15 A e^{5 i (c+d x)}-9 C e^{5 i (c+d x)}-5 i B \left (1+e^{2 i (c+d x)}\right )^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+(5 A+3 C) e^{i (c+d x)} \left (1+e^{2 i (c+d x)}\right )^{5/2} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-e^{2 i (c+d x)}\right )\right ) (b \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{15 d \left (1+e^{2 i (c+d x)}\right )^2 (A+2 C+2 B \cos (c+d x)+A \cos (2 (c+d x)))} \] Input:

Integrate[(b*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x 
]
 

Output:

(2*(-1 + E^((2*I)*c))*Cos[c + d*x]^3*Csc[c]*(5*B - 15*A*E^(I*(c + d*x)) - 
3*C*E^(I*(c + d*x)) - 30*A*E^((3*I)*(c + d*x)) - 24*C*E^((3*I)*(c + d*x)) 
- 5*B*E^((4*I)*(c + d*x)) - 15*A*E^((5*I)*(c + d*x)) - 9*C*E^((5*I)*(c + d 
*x)) - (5*I)*B*(1 + E^((2*I)*(c + d*x)))^2*Sqrt[Cos[c + d*x]]*EllipticF[(c 
 + d*x)/2, 2] + (5*A + 3*C)*E^(I*(c + d*x))*(1 + E^((2*I)*(c + d*x)))^(5/2 
)*Hypergeometric2F1[1/2, 3/4, 7/4, -E^((2*I)*(c + d*x))])*(b*Sec[c + d*x]) 
^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(15*d*E^(I*c)*(1 + E^((2*I 
)*(c + d*x)))^2*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*(c + d*x)]))
 

Rubi [A] (verified)

Time = 0.99 (sec) , antiderivative size = 179, normalized size of antiderivative = 1.01, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.455, Rules used = {3042, 4535, 3042, 4255, 3042, 4258, 3042, 3120, 4534, 3042, 4255, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (b \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 4535

\(\displaystyle \int (b \sec (c+d x))^{3/2} \left (C \sec ^2(c+d x)+A\right )dx+\frac {B \int (b \sec (c+d x))^{5/2}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx+\frac {B \int \left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}dx}{b}\)

\(\Big \downarrow \) 4255

\(\displaystyle \int \left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx+\frac {B \left (\frac {1}{3} b^2 \int \sqrt {b \sec (c+d x)}dx+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{3/2}}{3 d}\right )}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx+\frac {B \left (\frac {1}{3} b^2 \int \sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{3/2}}{3 d}\right )}{b}\)

\(\Big \downarrow \) 4258

\(\displaystyle \int \left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx+\frac {B \left (\frac {1}{3} b^2 \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{3/2}}{3 d}\right )}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx+\frac {B \left (\frac {1}{3} b^2 \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{3/2}}{3 d}\right )}{b}\)

\(\Big \downarrow \) 3120

\(\displaystyle \int \left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx+\frac {B \left (\frac {2 b^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{3/2}}{3 d}\right )}{b}\)

\(\Big \downarrow \) 4534

\(\displaystyle \frac {1}{5} (5 A+3 C) \int (b \sec (c+d x))^{3/2}dx+\frac {B \left (\frac {2 b^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{3/2}}{3 d}\right )}{b}+\frac {2 C \tan (c+d x) (b \sec (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} (5 A+3 C) \int \left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}dx+\frac {B \left (\frac {2 b^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{3/2}}{3 d}\right )}{b}+\frac {2 C \tan (c+d x) (b \sec (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {1}{5} (5 A+3 C) \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-b^2 \int \frac {1}{\sqrt {b \sec (c+d x)}}dx\right )+\frac {B \left (\frac {2 b^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{3/2}}{3 d}\right )}{b}+\frac {2 C \tan (c+d x) (b \sec (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} (5 A+3 C) \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-b^2 \int \frac {1}{\sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )+\frac {B \left (\frac {2 b^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{3/2}}{3 d}\right )}{b}+\frac {2 C \tan (c+d x) (b \sec (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{5} (5 A+3 C) \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {b^2 \int \sqrt {\cos (c+d x)}dx}{\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\right )+\frac {B \left (\frac {2 b^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{3/2}}{3 d}\right )}{b}+\frac {2 C \tan (c+d x) (b \sec (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} (5 A+3 C) \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {b^2 \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\right )+\frac {B \left (\frac {2 b^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{3/2}}{3 d}\right )}{b}+\frac {2 C \tan (c+d x) (b \sec (c+d x))^{3/2}}{5 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{5} (5 A+3 C) \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {2 b^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\right )+\frac {B \left (\frac {2 b^2 \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {2 b \sin (c+d x) (b \sec (c+d x))^{3/2}}{3 d}\right )}{b}+\frac {2 C \tan (c+d x) (b \sec (c+d x))^{3/2}}{5 d}\)

Input:

Int[(b*Sec[c + d*x])^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]
 

Output:

((5*A + 3*C)*((-2*b^2*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]]*Sqr 
t[b*Sec[c + d*x]]) + (2*b*Sqrt[b*Sec[c + d*x]]*Sin[c + d*x])/d))/5 + (B*(( 
2*b^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d*x]])/( 
3*d) + (2*b*(b*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(3*d)))/b + (2*C*(b*Sec[c 
 + d*x])^(3/2)*Tan[c + d*x])/(5*d)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4534
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1) 
)), x] + Simp[(C*m + A*(m + 1))/(m + 1)   Int[(b*Csc[e + f*x])^m, x], x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]
 

rule 4535
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]* 
(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.)), x_Symbol] :> Simp[B/b   Int[(b*Cs 
c[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x]^2) 
, x] /; FreeQ[{b, e, f, A, B, C, m}, x]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 4.01 (sec) , antiderivative size = 460, normalized size of antiderivative = 2.58

method result size
default \(\frac {2 b \left (15 i \left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) A \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+9 i \left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) C \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+15 i \left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) A \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+5 i \left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) B \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+9 i \left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) C \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+15 A \sin \left (d x +c \right )+5 B \left (\sin \left (d x +c \right )+\tan \left (d x +c \right )\right )+3 C \left (3 \sin \left (d x +c \right )+\tan \left (d x +c \right )+\sec \left (d x +c \right ) \tan \left (d x +c \right )\right )\right ) \sqrt {b \sec \left (d x +c \right )}}{15 d \left (\cos \left (d x +c \right )+1\right )}\) \(460\)
parts \(\frac {2 A \left (i \left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+i \left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+\sin \left (d x +c \right )\right ) \sqrt {b \sec \left (d x +c \right )}\, b}{d \left (\cos \left (d x +c \right )+1\right )}+\frac {B \left (-\frac {2 i \left (\cos \left (d x +c \right )+1\right ) \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}{3}+\frac {2 \tan \left (d x +c \right )}{3}\right ) b \sqrt {b \sec \left (d x +c \right )}}{d}+\frac {2 C \sqrt {b \sec \left (d x +c \right )}\, b \left (3 \sin \left (d x +c \right )+\tan \left (d x +c \right )+\sec \left (d x +c \right ) \tan \left (d x +c \right )+i \left (3 \cos \left (d x +c \right )^{2}+6 \cos \left (d x +c \right )+3\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+i \left (-3 \cos \left (d x +c \right )^{2}-6 \cos \left (d x +c \right )-3\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )\right )}{5 d \left (\cos \left (d x +c \right )+1\right )}\) \(477\)

Input:

int((b*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNV 
ERBOSE)
 

Output:

2/15/d*b*(15*I*(-cos(d*x+c)^2-2*cos(d*x+c)-1)*A*(cos(d*x+c)/(cos(d*x+c)+1) 
)^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE(I*(csc(d*x+c)-cot(d*x+c)),I)+9* 
I*(-cos(d*x+c)^2-2*cos(d*x+c)-1)*C*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(c 
os(d*x+c)+1))^(1/2)*EllipticE(I*(csc(d*x+c)-cot(d*x+c)),I)+15*I*(cos(d*x+c 
)^2+2*cos(d*x+c)+1)*A*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1)) 
^(1/2)*EllipticF(I*(csc(d*x+c)-cot(d*x+c)),I)+5*I*(-cos(d*x+c)^2-2*cos(d*x 
+c)-1)*B*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*Ellipt 
icF(I*(csc(d*x+c)-cot(d*x+c)),I)+9*I*(cos(d*x+c)^2+2*cos(d*x+c)+1)*C*(cos( 
d*x+c)/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(csc(d*x 
+c)-cot(d*x+c)),I)+15*A*sin(d*x+c)+5*B*(sin(d*x+c)+tan(d*x+c))+3*C*(3*sin( 
d*x+c)+tan(d*x+c)+sec(d*x+c)*tan(d*x+c)))*(b*sec(d*x+c))^(1/2)/(cos(d*x+c) 
+1)
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 225, normalized size of antiderivative = 1.26 \[ \int (b \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {-5 i \, \sqrt {2} B b^{\frac {3}{2}} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 5 i \, \sqrt {2} B b^{\frac {3}{2}} \cos \left (d x + c\right )^{2} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} {\left (5 \, A + 3 \, C\right )} b^{\frac {3}{2}} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} {\left (5 \, A + 3 \, C\right )} b^{\frac {3}{2}} \cos \left (d x + c\right )^{2} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (3 \, {\left (5 \, A + 3 \, C\right )} b \cos \left (d x + c\right )^{2} + 5 \, B b \cos \left (d x + c\right ) + 3 \, C b\right )} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{15 \, d \cos \left (d x + c\right )^{2}} \] Input:

integrate((b*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorith 
m="fricas")
 

Output:

1/15*(-5*I*sqrt(2)*B*b^(3/2)*cos(d*x + c)^2*weierstrassPInverse(-4, 0, cos 
(d*x + c) + I*sin(d*x + c)) + 5*I*sqrt(2)*B*b^(3/2)*cos(d*x + c)^2*weierst 
rassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2)*(5*A + 3* 
C)*b^(3/2)*cos(d*x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0 
, cos(d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(2)*(5*A + 3*C)*b^(3/2)*cos(d* 
x + c)^2*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - 
I*sin(d*x + c))) + 2*(3*(5*A + 3*C)*b*cos(d*x + c)^2 + 5*B*b*cos(d*x + c) 
+ 3*C*b)*sqrt(b/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^2)
 

Sympy [F]

\[ \int (b \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \left (b \sec {\left (c + d x \right )}\right )^{\frac {3}{2}} \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right )\, dx \] Input:

integrate((b*sec(d*x+c))**(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)
 

Output:

Integral((b*sec(c + d*x))**(3/2)*(A + B*sec(c + d*x) + C*sec(c + d*x)**2), 
 x)
 

Maxima [F]

\[ \int (b \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \left (b \sec \left (d x + c\right )\right )^{\frac {3}{2}} \,d x } \] Input:

integrate((b*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorith 
m="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c))^(3/2), 
x)
 

Giac [F]

\[ \int (b \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \left (b \sec \left (d x + c\right )\right )^{\frac {3}{2}} \,d x } \] Input:

integrate((b*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorith 
m="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*(b*sec(d*x + c))^(3/2), 
x)
 

Mupad [F(-1)]

Timed out. \[ \int (b \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int {\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \] Input:

int((b/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)
                                                                                    
                                                                                    
 

Output:

int((b/cos(c + d*x))^(3/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2), x)
 

Reduce [F]

\[ \int (b \sec (c+d x))^{3/2} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\sqrt {b}\, b \left (\left (\int \sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}d x \right ) b +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )d x \right ) a \right ) \] Input:

int((b*sec(d*x+c))^(3/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x)
 

Output:

sqrt(b)*b*(int(sqrt(sec(c + d*x))*sec(c + d*x)**3,x)*c + int(sqrt(sec(c + 
d*x))*sec(c + d*x)**2,x)*b + int(sqrt(sec(c + d*x))*sec(c + d*x),x)*a)