\(\int \sqrt {b \sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\) [66]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 33, antiderivative size = 136 \[ \int \sqrt {b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=-\frac {2 b B E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}+\frac {2 (3 A+C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {2 B \sqrt {b \sec (c+d x)} \sin (c+d x)}{d}+\frac {2 C \sqrt {b \sec (c+d x)} \tan (c+d x)}{3 d} \] Output:

-2*b*B*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d/cos(d*x+c)^(1/2)/(b*sec(d*x 
+c))^(1/2)+2/3*(3*A+C)*cos(d*x+c)^(1/2)*InverseJacobiAM(1/2*d*x+1/2*c,2^(1 
/2))*(b*sec(d*x+c))^(1/2)/d+2*B*(b*sec(d*x+c))^(1/2)*sin(d*x+c)/d+2/3*C*(b 
*sec(d*x+c))^(1/2)*tan(d*x+c)/d
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 1.88 (sec) , antiderivative size = 302, normalized size of antiderivative = 2.22 \[ \int \sqrt {b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {4 \sqrt {b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (-\frac {i \sqrt {2} e^{-i (c+d x)} \sqrt {\frac {e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (3 B \left (1+e^{2 i (c+d x)}\right )+3 B \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},\frac {1}{2},\frac {3}{4},-e^{2 i (c+d x)}\right )+(3 A+C) e^{i (c+d x)} \left (-1+e^{2 i c}\right ) \sqrt {1+e^{2 i (c+d x)}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-e^{2 i (c+d x)}\right )\right )}{-1+e^{2 i c}}+\sqrt {\sec (c+d x)} (3 B \cos (d x) \csc (c)+C \tan (c+d x))\right )}{3 d (A+2 C+2 B \cos (c+d x)+A \cos (2 (c+d x))) \sec ^{\frac {5}{2}}(c+d x)} \] Input:

Integrate[Sqrt[b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]
 

Output:

(4*Sqrt[b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*(((-I)*Sqr 
t[2]*Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*(3*B*(1 + E^((2*I)*(c 
 + d*x))) + 3*B*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeom 
etric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + (3*A + C)*E^(I*(c + d*x)) 
*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1 
/2, 5/4, -E^((2*I)*(c + d*x))]))/(E^(I*(c + d*x))*(-1 + E^((2*I)*c))) + Sq 
rt[Sec[c + d*x]]*(3*B*Cos[d*x]*Csc[c] + C*Tan[c + d*x])))/(3*d*(A + 2*C + 
2*B*Cos[c + d*x] + A*Cos[2*(c + d*x)])*Sec[c + d*x]^(5/2))
 

Rubi [A] (verified)

Time = 0.83 (sec) , antiderivative size = 143, normalized size of antiderivative = 1.05, number of steps used = 13, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.394, Rules used = {3042, 4535, 3042, 4255, 3042, 4258, 3042, 3119, 4534, 3042, 4258, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )dx\)

\(\Big \downarrow \) 4535

\(\displaystyle \int \sqrt {b \sec (c+d x)} \left (C \sec ^2(c+d x)+A\right )dx+\frac {B \int (b \sec (c+d x))^{3/2}dx}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx+\frac {B \int \left (b \csc \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}dx}{b}\)

\(\Big \downarrow \) 4255

\(\displaystyle \int \sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx+\frac {B \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-b^2 \int \frac {1}{\sqrt {b \sec (c+d x)}}dx\right )}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx+\frac {B \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-b^2 \int \frac {1}{\sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )}}dx\right )}{b}\)

\(\Big \downarrow \) 4258

\(\displaystyle \int \sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx+\frac {B \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {b^2 \int \sqrt {\cos (c+d x)}dx}{\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\right )}{b}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx+\frac {B \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {b^2 \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{\sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\right )}{b}\)

\(\Big \downarrow \) 3119

\(\displaystyle \int \sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )dx+\frac {B \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {2 b^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\right )}{b}\)

\(\Big \downarrow \) 4534

\(\displaystyle \frac {1}{3} (3 A+C) \int \sqrt {b \sec (c+d x)}dx+\frac {B \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {2 b^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\right )}{b}+\frac {2 C \tan (c+d x) \sqrt {b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} (3 A+C) \int \sqrt {b \csc \left (c+d x+\frac {\pi }{2}\right )}dx+\frac {B \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {2 b^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\right )}{b}+\frac {2 C \tan (c+d x) \sqrt {b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {1}{3} (3 A+C) \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)} \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {B \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {2 b^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\right )}{b}+\frac {2 C \tan (c+d x) \sqrt {b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{3} (3 A+C) \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)} \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {B \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {2 b^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\right )}{b}+\frac {2 C \tan (c+d x) \sqrt {b \sec (c+d x)}}{3 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {2 (3 A+C) \sqrt {\cos (c+d x)} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right ) \sqrt {b \sec (c+d x)}}{3 d}+\frac {B \left (\frac {2 b \sin (c+d x) \sqrt {b \sec (c+d x)}}{d}-\frac {2 b^2 E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d \sqrt {\cos (c+d x)} \sqrt {b \sec (c+d x)}}\right )}{b}+\frac {2 C \tan (c+d x) \sqrt {b \sec (c+d x)}}{3 d}\)

Input:

Int[Sqrt[b*Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]
 

Output:

(2*(3*A + C)*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2]*Sqrt[b*Sec[c + d 
*x]])/(3*d) + (B*((-2*b^2*EllipticE[(c + d*x)/2, 2])/(d*Sqrt[Cos[c + d*x]] 
*Sqrt[b*Sec[c + d*x]]) + (2*b*Sqrt[b*Sec[c + d*x]]*Sin[c + d*x])/d))/b + ( 
2*C*Sqrt[b*Sec[c + d*x]]*Tan[c + d*x])/(3*d)
 

Defintions of rubi rules used

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 

rule 4534
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) 
+ (A_)), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1) 
)), x] + Simp[(C*m + A*(m + 1))/(m + 1)   Int[(b*Csc[e + f*x])^m, x], x] /; 
 FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] &&  !LeQ[m, -1]
 

rule 4535
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]* 
(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.)), x_Symbol] :> Simp[B/b   Int[(b*Cs 
c[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*x]^2) 
, x] /; FreeQ[{b, e, f, A, B, C, m}, x]
 
Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.25 (sec) , antiderivative size = 347, normalized size of antiderivative = 2.55

method result size
parts \(-\frac {2 i A \left (\cos \left (d x +c \right )+1\right ) \sqrt {b \sec \left (d x +c \right )}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )}{d}+\frac {2 B \left (i \left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+i \left (-\cos \left (d x +c \right )^{2}-2 \cos \left (d x +c \right )-1\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+\sin \left (d x +c \right )\right ) \sqrt {b \sec \left (d x +c \right )}}{d \left (\cos \left (d x +c \right )+1\right )}+\frac {C \left (-\frac {2 i \left (\cos \left (d x +c \right )+1\right ) \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right ) \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}}{3}+\frac {2 \tan \left (d x +c \right )}{3}\right ) \sqrt {b \sec \left (d x +c \right )}}{d}\) \(347\)
default \(-\frac {2 \sqrt {b \sec \left (d x +c \right )}\, \left (i \left (3 \cos \left (d x +c \right )^{2}+6 \cos \left (d x +c \right )+3\right ) B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticE}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+i \left (3 \cos \left (d x +c \right )^{2}+6 \cos \left (d x +c \right )+3\right ) A \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+i \left (-3 \cos \left (d x +c \right )^{2}-6 \cos \left (d x +c \right )-3\right ) B \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )+i \left (\cos \left (d x +c \right )^{2}+2 \cos \left (d x +c \right )+1\right ) C \sqrt {\frac {\cos \left (d x +c \right )}{\cos \left (d x +c \right )+1}}\, \sqrt {\frac {1}{\cos \left (d x +c \right )+1}}\, \operatorname {EllipticF}\left (i \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right ), i\right )-3 B \sin \left (d x +c \right )+C \left (-\sin \left (d x +c \right )-\tan \left (d x +c \right )\right )\right )}{3 d \left (\cos \left (d x +c \right )+1\right )}\) \(357\)

Input:

int((b*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x,method=_RETURNV 
ERBOSE)
 

Output:

-2*I*A/d*(cos(d*x+c)+1)*(b*sec(d*x+c))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*(cos 
(d*x+c)/(cos(d*x+c)+1))^(1/2)*EllipticF(I*(csc(d*x+c)-cot(d*x+c)),I)+2*B/d 
*(I*(cos(d*x+c)^2+2*cos(d*x+c)+1)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(co 
s(d*x+c)+1))^(1/2)*EllipticF(I*(csc(d*x+c)-cot(d*x+c)),I)+I*(-cos(d*x+c)^2 
-2*cos(d*x+c)-1)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2 
)*EllipticE(I*(csc(d*x+c)-cot(d*x+c)),I)+sin(d*x+c))*(b*sec(d*x+c))^(1/2)/ 
(cos(d*x+c)+1)+C/d*(-2/3*I*(cos(d*x+c)+1)*EllipticF(I*(csc(d*x+c)-cot(d*x+ 
c)),I)*(1/(cos(d*x+c)+1))^(1/2)*(cos(d*x+c)/(cos(d*x+c)+1))^(1/2)+2/3*tan( 
d*x+c))*(b*sec(d*x+c))^(1/2)
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 193, normalized size of antiderivative = 1.42 \[ \int \sqrt {b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\frac {\sqrt {2} {\left (-3 i \, A - i \, C\right )} \sqrt {b} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + \sqrt {2} {\left (3 i \, A + i \, C\right )} \sqrt {b} \cos \left (d x + c\right ) {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 i \, \sqrt {2} B \sqrt {b} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) + 3 i \, \sqrt {2} B \sqrt {b} \cos \left (d x + c\right ) {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) + 2 \, {\left (3 \, B \cos \left (d x + c\right ) + C\right )} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{3 \, d \cos \left (d x + c\right )} \] Input:

integrate((b*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorith 
m="fricas")
 

Output:

1/3*(sqrt(2)*(-3*I*A - I*C)*sqrt(b)*cos(d*x + c)*weierstrassPInverse(-4, 0 
, cos(d*x + c) + I*sin(d*x + c)) + sqrt(2)*(3*I*A + I*C)*sqrt(b)*cos(d*x + 
 c)*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c)) - 3*I*sqrt(2 
)*B*sqrt(b)*cos(d*x + c)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, 
 cos(d*x + c) + I*sin(d*x + c))) + 3*I*sqrt(2)*B*sqrt(b)*cos(d*x + c)*weie 
rstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c 
))) + 2*(3*B*cos(d*x + c) + C)*sqrt(b/cos(d*x + c))*sin(d*x + c))/(d*cos(d 
*x + c))
 

Sympy [F]

\[ \int \sqrt {b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \sqrt {b \sec {\left (c + d x \right )}} \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right )\, dx \] Input:

integrate((b*sec(d*x+c))**(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2),x)
 

Output:

Integral(sqrt(b*sec(c + d*x))*(A + B*sec(c + d*x) + C*sec(c + d*x)**2), x)
 

Maxima [F]

\[ \int \sqrt {b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right )} \,d x } \] Input:

integrate((b*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorith 
m="maxima")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c)), x)
 

Giac [F]

\[ \int \sqrt {b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int { {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right )} \,d x } \] Input:

integrate((b*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x, algorith 
m="giac")
 

Output:

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c)), x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\int \sqrt {\frac {b}{\cos \left (c+d\,x\right )}}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right ) \,d x \] Input:

int((b/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)
                                                                                    
                                                                                    
 

Output:

int((b/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2), x)
 

Reduce [F]

\[ \int \sqrt {b \sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx=\sqrt {b}\, \left (\left (\int \sqrt {\sec \left (d x +c \right )}d x \right ) a +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )^{2}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )}\, \sec \left (d x +c \right )d x \right ) b \right ) \] Input:

int((b*sec(d*x+c))^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2),x)
 

Output:

sqrt(b)*(int(sqrt(sec(c + d*x)),x)*a + int(sqrt(sec(c + d*x))*sec(c + d*x) 
**2,x)*c + int(sqrt(sec(c + d*x))*sec(c + d*x),x)*b)