\(\int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} (A+C \sec ^2(c+d x)) \, dx\) [1137]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 37, antiderivative size = 169 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {8 a^2 (19 A+35 C) \sin (c+d x)}{105 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {2 a (19 A+35 C) \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{105 d}+\frac {6 A \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{35 d}+\frac {2 A \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{7 d} \] Output:

8/105*a^2*(19*A+35*C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*sec(d*x+c))^(1/2) 
+2/105*a*(19*A+35*C)*cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2)*sin(d*x+c)/d+ 
6/35*A*cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(3/2)*sin(d*x+c)/d+2/7*A*cos(d*x+ 
c)^(5/2)*(a+a*sec(d*x+c))^(3/2)*sin(d*x+c)/d
 

Mathematica [A] (verified)

Time = 2.03 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.50 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {a \sqrt {\cos (c+d x)} (494 A+700 C+(253 A+140 C) \cos (c+d x)+78 A \cos (2 (c+d x))+15 A \cos (3 (c+d x))) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{210 d} \] Input:

Integrate[Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x 
]^2),x]
 

Output:

(a*Sqrt[Cos[c + d*x]]*(494*A + 700*C + (253*A + 140*C)*Cos[c + d*x] + 78*A 
*Cos[2*(c + d*x)] + 15*A*Cos[3*(c + d*x)])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[ 
(c + d*x)/2])/(210*d)
 

Rubi [A] (verified)

Time = 1.13 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.17, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.297, Rules used = {3042, 4753, 3042, 4575, 27, 3042, 4501, 3042, 4296, 3042, 4291}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cos ^{\frac {7}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \cos (c+d x)^{7/2} (a \sec (c+d x)+a)^{3/2} \left (A+C \sec (c+d x)^2\right )dx\)

\(\Big \downarrow \) 4753

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {(\sec (c+d x) a+a)^{3/2} \left (C \sec ^2(c+d x)+A\right )}{\sec ^{\frac {7}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (C \csc \left (c+d x+\frac {\pi }{2}\right )^2+A\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}dx\)

\(\Big \downarrow \) 4575

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {2 \int \frac {(\sec (c+d x) a+a)^{3/2} (3 a A+a (2 A+7 C) \sec (c+d x))}{2 \sec ^{\frac {5}{2}}(c+d x)}dx}{7 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {(\sec (c+d x) a+a)^{3/2} (3 a A+a (2 A+7 C) \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)}dx}{7 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2} \left (3 a A+a (2 A+7 C) \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\csc \left (c+d x+\frac {\pi }{2}\right )^{5/2}}dx}{7 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4501

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{5} a (19 A+35 C) \int \frac {(\sec (c+d x) a+a)^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)}dx+\frac {6 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{5} a (19 A+35 C) \int \frac {\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2}}dx+\frac {6 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4296

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{5} a (19 A+35 C) \left (\frac {4}{3} a \int \frac {\sqrt {\sec (c+d x) a+a}}{\sqrt {\sec (c+d x)}}dx+\frac {2 a \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {6 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{5} a (19 A+35 C) \left (\frac {4}{3} a \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {6 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\)

\(\Big \downarrow \) 4291

\(\displaystyle \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \left (\frac {\frac {1}{5} a (19 A+35 C) \left (\frac {8 a^2 \sin (c+d x) \sqrt {\sec (c+d x)}}{3 d \sqrt {a \sec (c+d x)+a}}+\frac {2 a \sin (c+d x) \sqrt {a \sec (c+d x)+a}}{3 d \sqrt {\sec (c+d x)}}\right )+\frac {6 a A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d \sec ^{\frac {3}{2}}(c+d x)}}{7 a}+\frac {2 A \sin (c+d x) (a \sec (c+d x)+a)^{3/2}}{7 d \sec ^{\frac {5}{2}}(c+d x)}\right )\)

Input:

Int[Cos[c + d*x]^(7/2)*(a + a*Sec[c + d*x])^(3/2)*(A + C*Sec[c + d*x]^2),x 
]
 

Output:

Sqrt[Cos[c + d*x]]*Sqrt[Sec[c + d*x]]*((2*A*(a + a*Sec[c + d*x])^(3/2)*Sin 
[c + d*x])/(7*d*Sec[c + d*x]^(5/2)) + ((6*a*A*(a + a*Sec[c + d*x])^(3/2)*S 
in[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (a*(19*A + 35*C)*((8*a^2*Sqrt[Sec[ 
c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[a + a*Sec[c + d*x]]) + (2*a*Sqrt[a + a*S 
ec[c + d*x]]*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]])))/5)/(7*a))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4291
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)] 
*(d_.)], x_Symbol] :> Simp[-2*a*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*S 
qrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4296
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-a)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1) 
*((d*Csc[e + f*x])^n/(f*m)), x] + Simp[b*((2*m - 1)/(d*m))   Int[(a + b*Csc 
[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f 
, m, n}, x] && EqQ[a^2 - b^2, 0] && EqQ[m + n, 0] && GtQ[m, 1/2] && Integer 
Q[2*m]
 

rule 4501
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[(a*A*m 
 - b*B*n)/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x] 
, x] /; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a 
^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]
 

rule 4575
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Co 
t[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/( 
b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b 
*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, 
 C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || 
 EqQ[m + n + 1, 0])
 

rule 4753
Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cos[a 
+ b*x])^m*(c*Sec[a + b*x])^m   Int[ActivateTrig[u]/(c*Sec[a + b*x])^m, x], 
x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[u, x 
]
 
Maple [A] (verified)

Time = 2.42 (sec) , antiderivative size = 88, normalized size of antiderivative = 0.52

method result size
default \(\frac {2 \sin \left (d x +c \right ) \left (\left (15 \cos \left (d x +c \right )^{3}+39 \cos \left (d x +c \right )^{2}+52 \cos \left (d x +c \right )+104\right ) A +\left (35 \cos \left (d x +c \right )+175\right ) C \right ) \sqrt {\cos \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, a}{105 d \left (\cos \left (d x +c \right )+1\right )}\) \(88\)

Input:

int(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x,method=_R 
ETURNVERBOSE)
 

Output:

2/105/d*sin(d*x+c)*((15*cos(d*x+c)^3+39*cos(d*x+c)^2+52*cos(d*x+c)+104)*A+ 
(35*cos(d*x+c)+175)*C)*cos(d*x+c)^(1/2)*(a*(1+sec(d*x+c)))^(1/2)*a/(cos(d* 
x+c)+1)
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.58 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {2 \, {\left (15 \, A a \cos \left (d x + c\right )^{3} + 39 \, A a \cos \left (d x + c\right )^{2} + {\left (52 \, A + 35 \, C\right )} a \cos \left (d x + c\right ) + {\left (104 \, A + 175 \, C\right )} a\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{105 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \] Input:

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, al 
gorithm="fricas")
 

Output:

2/105*(15*A*a*cos(d*x + c)^3 + 39*A*a*cos(d*x + c)^2 + (52*A + 35*C)*a*cos 
(d*x + c) + (104*A + 175*C)*a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqr 
t(cos(d*x + c))*sin(d*x + c)/(d*cos(d*x + c) + d)
 

Sympy [F(-1)]

Timed out. \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\text {Timed out} \] Input:

integrate(cos(d*x+c)**(7/2)*(a+a*sec(d*x+c))**(3/2)*(A+C*sec(d*x+c)**2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 368 vs. \(2 (145) = 290\).

Time = 0.24 (sec) , antiderivative size = 368, normalized size of antiderivative = 2.18 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx =\text {Too large to display} \] Input:

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, al 
gorithm="maxima")
 

Output:

1/840*(sqrt(2)*(735*a*cos(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 
7/2*c)))*sin(7/2*d*x + 7/2*c) + 175*a*cos(4/7*arctan2(sin(7/2*d*x + 7/2*c) 
, cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) + 63*a*cos(2/7*arctan2(sin(7 
/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c)))*sin(7/2*d*x + 7/2*c) - 735*a*cos(7 
/2*d*x + 7/2*c)*sin(6/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c) 
)) - 175*a*cos(7/2*d*x + 7/2*c)*sin(4/7*arctan2(sin(7/2*d*x + 7/2*c), cos( 
7/2*d*x + 7/2*c))) - 63*a*cos(7/2*d*x + 7/2*c)*sin(2/7*arctan2(sin(7/2*d*x 
 + 7/2*c), cos(7/2*d*x + 7/2*c))) + 30*a*sin(7/2*d*x + 7/2*c) + 63*a*sin(5 
/7*arctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 175*a*sin(3/7*ar 
ctan2(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))) + 735*a*sin(1/7*arctan2 
(sin(7/2*d*x + 7/2*c), cos(7/2*d*x + 7/2*c))))*A*sqrt(a) + 280*(sqrt(2)*a* 
sin(3/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 9*sqrt(2)*a*sin(1/4 
*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*C*sqrt(a))/d
 

Giac [A] (verification not implemented)

Time = 0.46 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.15 \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\frac {4 \, {\left ({\left ({\left (2 \, \sqrt {2} {\left (19 \, A a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 35 \, C a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 7 \, \sqrt {2} {\left (19 \, A a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 35 \, C a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 140 \, \sqrt {2} {\left (A a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 2 \, C a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 105 \, \sqrt {2} {\left (A a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + C a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{105 \, {\left (a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a\right )}^{\frac {7}{2}} d} \] Input:

integrate(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x, al 
gorithm="giac")
 

Output:

4/105*(((2*sqrt(2)*(19*A*a^5*sgn(cos(d*x + c)) + 35*C*a^5*sgn(cos(d*x + c) 
))*tan(1/2*d*x + 1/2*c)^2 + 7*sqrt(2)*(19*A*a^5*sgn(cos(d*x + c)) + 35*C*a 
^5*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)^2 + 140*sqrt(2)*(A*a^5*sgn(cos 
(d*x + c)) + 2*C*a^5*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2*c)^2 + 105*sqrt 
(2)*(A*a^5*sgn(cos(d*x + c)) + C*a^5*sgn(cos(d*x + c))))*tan(1/2*d*x + 1/2 
*c)/((a*tan(1/2*d*x + 1/2*c)^2 + a)^(7/2)*d)
 

Mupad [F(-1)]

Timed out. \[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\int {\cos \left (c+d\,x\right )}^{7/2}\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2} \,d x \] Input:

int(cos(c + d*x)^(7/2)*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(3/2),x 
)
 

Output:

int(cos(c + d*x)^(7/2)*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(3/2), 
x)
 

Reduce [F]

\[ \int \cos ^{\frac {7}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \left (A+C \sec ^2(c+d x)\right ) \, dx=\sqrt {a}\, a \left (\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3} \sec \left (d x +c \right )^{3}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3} \sec \left (d x +c \right )^{2}d x \right ) c +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3} \sec \left (d x +c \right )d x \right ) a +\left (\int \sqrt {\sec \left (d x +c \right )+1}\, \sqrt {\cos \left (d x +c \right )}\, \cos \left (d x +c \right )^{3}d x \right ) a \right ) \] Input:

int(cos(d*x+c)^(7/2)*(a+a*sec(d*x+c))^(3/2)*(A+C*sec(d*x+c)^2),x)
 

Output:

sqrt(a)*a*(int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c + d*x)**3*s 
ec(c + d*x)**3,x)*c + int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d*x))*cos(c 
+ d*x)**3*sec(c + d*x)**2,x)*c + int(sqrt(sec(c + d*x) + 1)*sqrt(cos(c + d 
*x))*cos(c + d*x)**3*sec(c + d*x),x)*a + int(sqrt(sec(c + d*x) + 1)*sqrt(c 
os(c + d*x))*cos(c + d*x)**3,x)*a)