\(\int \frac {\sqrt {\sec (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x))}{(a+a \sec (c+d x))^{3/2}} \, dx\) [615]

Optimal result
Mathematica [B] (verified)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 45, antiderivative size = 149 \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {2 C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{3/2} d}+\frac {(3 A+B-5 C) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {(A-B+C) \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}} \] Output:

2*C*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d+1/4*(3*A+ 
B-5*C)*arctanh(1/2*a^(1/2)*sec(d*x+c)^(1/2)*sin(d*x+c)*2^(1/2)/(a+a*sec(d* 
x+c))^(1/2))*2^(1/2)/a^(3/2)/d-1/2*(A-B+C)*sec(d*x+c)^(3/2)*sin(d*x+c)/d/( 
a+a*sec(d*x+c))^(3/2)
 

Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(523\) vs. \(2(149)=298\).

Time = 3.32 (sec) , antiderivative size = 523, normalized size of antiderivative = 3.51 \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {8 (B-C) \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x) \sin \left (\frac {1}{2} (c+d x)\right )+8 (B-5 C) \arcsin \left (\sqrt {\sec (c+d x)}\right ) \cos ^3\left (\frac {1}{2} (c+d x)\right ) \sec ^2(c+d x) \sin \left (\frac {1}{2} (c+d x)\right )-2 A \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)+2 B \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)-2 C \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)-3 \sqrt {2} A \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \tan (c+d x)-\sqrt {2} B \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \tan (c+d x)+5 \sqrt {2} C \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \tan (c+d x)-3 \sqrt {2} A \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec (c+d x) \tan (c+d x)-\sqrt {2} B \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec (c+d x) \tan (c+d x)+5 \sqrt {2} C \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec (c+d x) \tan (c+d x)}{4 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{3/2}} \] Input:

Integrate[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a 
+ a*Sec[c + d*x])^(3/2),x]
 

Output:

(8*(B - C)*ArcSin[Sqrt[1 - Sec[c + d*x]]]*Cos[(c + d*x)/2]^3*Sec[c + d*x]^ 
2*Sin[(c + d*x)/2] + 8*(B - 5*C)*ArcSin[Sqrt[Sec[c + d*x]]]*Cos[(c + d*x)/ 
2]^3*Sec[c + d*x]^2*Sin[(c + d*x)/2] - 2*A*Sqrt[1 - Sec[c + d*x]]*Sec[c + 
d*x]^(3/2)*Sin[c + d*x] + 2*B*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2)*Si 
n[c + d*x] - 2*C*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x] - 
3*Sqrt[2]*A*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Ta 
n[c + d*x] - Sqrt[2]*B*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c 
+ d*x]]]*Tan[c + d*x] + 5*Sqrt[2]*C*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sq 
rt[1 - Sec[c + d*x]]]*Tan[c + d*x] - 3*Sqrt[2]*A*ArcTan[(Sqrt[2]*Sqrt[Sec[ 
c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sec[c + d*x]*Tan[c + d*x] - Sqrt[2]*B*A 
rcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sec[c + d*x]*Ta 
n[c + d*x] + 5*Sqrt[2]*C*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[ 
c + d*x]]]*Sec[c + d*x]*Tan[c + d*x])/(4*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + 
Sec[c + d*x]))^(3/2))
 

Rubi [A] (verified)

Time = 0.88 (sec) , antiderivative size = 154, normalized size of antiderivative = 1.03, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {3042, 4572, 27, 3042, 4511, 3042, 4288, 222, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a \sec (c+d x)+a)^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (A+B \csc \left (c+d x+\frac {\pi }{2}\right )+C \csc \left (c+d x+\frac {\pi }{2}\right )^2\right )}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{3/2}}dx\)

\(\Big \downarrow \) 4572

\(\displaystyle \frac {\int \frac {\sqrt {\sec (c+d x)} (a (3 A+B-C)+4 a C \sec (c+d x))}{2 \sqrt {\sec (c+d x) a+a}}dx}{2 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\sqrt {\sec (c+d x)} (a (3 A+B-C)+4 a C \sec (c+d x))}{\sqrt {\sec (c+d x) a+a}}dx}{4 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (a (3 A+B-C)+4 a C \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4511

\(\displaystyle \frac {a (3 A+B-5 C) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx+4 C \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx}{4 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {a (3 A+B-5 C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+4 C \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{4 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4288

\(\displaystyle \frac {a (3 A+B-5 C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {8 C \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{4 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 222

\(\displaystyle \frac {a (3 A+B-5 C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {8 \sqrt {a} C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 4295

\(\displaystyle \frac {\frac {8 \sqrt {a} C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {2 a (3 A+B-5 C) \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{4 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\sqrt {2} \sqrt {a} (3 A+B-5 C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}+\frac {8 \sqrt {a} C \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{4 a^2}-\frac {(A-B+C) \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}\)

Input:

Int[(Sqrt[Sec[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2))/(a + a*Se 
c[c + d*x])^(3/2),x]
 

Output:

((8*Sqrt[a]*C*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d 
+ (Sqrt[2]*Sqrt[a]*(3*A + B - 5*C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin 
[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/d)/(4*a^2) - ((A - B + C)* 
Sec[c + d*x]^(3/2)*Sin[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2))
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4511
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(A*b - 
a*B)/b   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Simp[B/b 
 Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b 
, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0]
 

rule 4572
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_. 
))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a 
_))^(m_), x_Symbol] :> Simp[(-(a*A - b*B + a*C))*Cot[e + f*x]*(a + b*Csc[e 
+ f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1)) 
   Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*B*n - b*C*n - 
 A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m - n)))*Csc[ 
e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - 
b^2, 0] && LtQ[m, -2^(-1)]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(358\) vs. \(2(124)=248\).

Time = 6.30 (sec) , antiderivative size = 359, normalized size of antiderivative = 2.41

method result size
default \(\frac {\sqrt {\sec \left (d x +c \right )}\, \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right ) \sqrt {-a \left (-1-\sec \left (d x +c \right )\right )}\, \left (A \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )-B \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )-2 C \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}-2 C \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {2}+C \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\, \left (\csc \left (d x +c \right )-\cot \left (d x +c \right )\right )-3 A \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-B \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+5 C \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )\right ) \sqrt {2}}{8 d \,a^{2} \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(359\)
parts \(\frac {A \left (\left (3 \cos \left (d x +c \right )+3\right ) \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-\sin \left (d x +c \right ) \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\right ) \sqrt {\sec \left (d x +c \right )}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {2}\, \cos \left (d x +c \right )}{4 d \,a^{2} \left (\cos \left (d x +c \right )+1\right )^{2} \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}+\frac {B \left (\left (\cos \left (d x +c \right )+1\right ) \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\sin \left (d x +c \right ) \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\right ) \sqrt {2}\, \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sec \left (d x +c \right )^{\frac {3}{2}} \cos \left (d x +c \right )^{2}}{4 d \,a^{2} \left (\cos \left (d x +c \right )+1\right )^{2} \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}+\frac {C \cos \left (d x +c \right )^{3} \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sec \left (d x +c \right )^{\frac {5}{2}} \left (-5 \sqrt {2}\, \left (\cos \left (d x +c \right )+1\right ) \arctan \left (\frac {\sqrt {2}\, \left (-\csc \left (d x +c \right )+\cot \left (d x +c \right )\right )}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\left (4 \cos \left (d x +c \right )+4\right ) \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )-1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )+\left (4 \cos \left (d x +c \right )+4\right ) \arctan \left (\frac {\cot \left (d x +c \right )-\csc \left (d x +c \right )+1}{2 \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right )-\sqrt {2}\, \sin \left (d x +c \right ) \sqrt {-\frac {2}{\cos \left (d x +c \right )+1}}\right )}{4 d \,a^{2} \left (\cos \left (d x +c \right )+1\right )^{2} \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(486\)

Input:

int(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2 
),x,method=_RETURNVERBOSE)
 

Output:

1/8/d/a^2*sec(d*x+c)^(1/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)*(-a*(-1-sec(d 
*x+c)))^(1/2)*(A*(-2/(cos(d*x+c)+1))^(1/2)*(csc(d*x+c)-cot(d*x+c))-B*(-2/( 
cos(d*x+c)+1))^(1/2)*(csc(d*x+c)-cot(d*x+c))-2*C*arctan(1/2*(cot(d*x+c)-cs 
c(d*x+c)-1)/(-1/(cos(d*x+c)+1))^(1/2))*2^(1/2)-2*C*arctan(1/2/(-1/(cos(d*x 
+c)+1))^(1/2)*(cot(d*x+c)-csc(d*x+c)+1))*2^(1/2)+C*(-2/(cos(d*x+c)+1))^(1/ 
2)*(csc(d*x+c)-cot(d*x+c))-3*A*arctan(1/2*2^(1/2)/(-1/(cos(d*x+c)+1))^(1/2 
)*(-csc(d*x+c)+cot(d*x+c)))-B*arctan(1/2*2^(1/2)/(-1/(cos(d*x+c)+1))^(1/2) 
*(-csc(d*x+c)+cot(d*x+c)))+5*C*arctan(1/2*2^(1/2)/(-1/(cos(d*x+c)+1))^(1/2 
)*(-csc(d*x+c)+cot(d*x+c))))*2^(1/2)/(-1/(cos(d*x+c)+1))^(1/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 272 vs. \(2 (124) = 248\).

Time = 0.13 (sec) , antiderivative size = 618, normalized size of antiderivative = 4.15 \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx =\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
)^(3/2),x, algorithm="fricas")
 

Output:

[-1/8*(sqrt(2)*((3*A + B - 5*C)*cos(d*x + c)^2 + 2*(3*A + B - 5*C)*cos(d*x 
 + c) + 3*A + B - 5*C)*sqrt(a)*log(-(a*cos(d*x + c)^2 + 2*sqrt(2)*sqrt(a)* 
sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 
2*a*cos(d*x + c) - 3*a)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*(A - B 
+ C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + 
c) - 4*(C*cos(d*x + c)^2 + 2*C*cos(d*x + c) + C)*sqrt(a)*log((a*cos(d*x + 
c)^3 - 7*a*cos(d*x + c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sq 
rt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8* 
a)/(cos(d*x + c)^3 + cos(d*x + c)^2)))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos 
(d*x + c) + a^2*d), -1/4*(sqrt(2)*((3*A + B - 5*C)*cos(d*x + c)^2 + 2*(3*A 
 + B - 5*C)*cos(d*x + c) + 3*A + B - 5*C)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a) 
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))/(a*sin(d*x + c 
))) + 2*(A - B + C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + 
 c))*sin(d*x + c) - 4*(C*cos(d*x + c)^2 + 2*C*cos(d*x + c) + C)*sqrt(-a)*a 
rctan(1/2*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(-a)*sqrt((a*cos(d*x + c) 
+ a)/cos(d*x + c))/(a*sqrt(cos(d*x + c))*sin(d*x + c))))/(a^2*d*cos(d*x + 
c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\text {Timed out} \] Input:

integrate(sec(d*x+c)**(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+ 
c))**(3/2),x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 18871 vs. \(2 (124) = 248\).

Time = 0.90 (sec) , antiderivative size = 18871, normalized size of antiderivative = 126.65 \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\text {Too large to display} \] Input:

integrate(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
)^(3/2),x, algorithm="maxima")
 

Output:

1/4*((3*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d 
*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2 
*sin(1/2*d*x + 1/2*c) + 1))*cos(2*d*x + 2*c)^2 + 12*(log(cos(1/2*d*x + 1/2 
*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2 
*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*co 
s(d*x + c)^2 + 3*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2* 
sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2 
*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*sin(2*d*x + 2*c)^2 + 12*(log(cos(1/2* 
d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - lo 
g(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) 
 + 1))*sin(d*x + c)^2 + 2*(6*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1 
/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - log(cos(1/2*d*x + 1/2*c)^2 + sin(1 
/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*cos(d*x + c) + 3*log(cos( 
1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) 
- 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 
1/2*c) + 1) - 2*sin(3/2*d*x + 3/2*c) + 2*sin(1/2*d*x + 1/2*c))*cos(2*d*x + 
 2*c) + 4*(3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1 
/2*d*x + 1/2*c) + 1) - 3*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c) 
^2 - 2*sin(1/2*d*x + 1/2*c) + 1) + 2*sin(1/2*d*x + 1/2*c))*cos(d*x + c) + 
4*(3*(log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d...
 

Giac [A] (verification not implemented)

Time = 2.59 (sec) , antiderivative size = 234, normalized size of antiderivative = 1.57 \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=-\frac {\frac {\sqrt {2} {\left (3 \, A \sqrt {a} + B \sqrt {a} - 5 \, C \sqrt {a}\right )} \log \left ({\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2}\right )}{a^{2}} - \frac {8 \, C \log \left ({\left | {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right )}{a^{\frac {3}{2}}} + \frac {8 \, C \log \left ({\left | {\left (\sqrt {a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right )}{a^{\frac {3}{2}}} + \frac {2 \, \sqrt {a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} {\left (\sqrt {2} A a - \sqrt {2} B a + \sqrt {2} C a\right )} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{3}}}{8 \, d \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} \] Input:

integrate(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c) 
)^(3/2),x, algorithm="giac")
 

Output:

-1/8*(sqrt(2)*(3*A*sqrt(a) + B*sqrt(a) - 5*C*sqrt(a))*log((sqrt(a)*tan(1/2 
*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2)/a^2 - 8*C*log(abs(( 
sqrt(a)*tan(1/2*d*x + 1/2*c) - sqrt(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*( 
2*sqrt(2) + 3)))/a^(3/2) + 8*C*log(abs((sqrt(a)*tan(1/2*d*x + 1/2*c) - sqr 
t(a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a*(2*sqrt(2) - 3)))/a^(3/2) + 2*sqrt( 
a*tan(1/2*d*x + 1/2*c)^2 + a)*(sqrt(2)*A*a - sqrt(2)*B*a + sqrt(2)*C*a)*ta 
n(1/2*d*x + 1/2*c)/a^3)/(d*sgn(cos(d*x + c)))
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\int \frac {\sqrt {\frac {1}{\cos \left (c+d\,x\right )}}\,\left (A+\frac {B}{\cos \left (c+d\,x\right )}+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \] Input:

int(((1/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + 
a/cos(c + d*x))^(3/2),x)
 

Output:

int(((1/cos(c + d*x))^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2))/(a + 
a/cos(c + d*x))^(3/2), x)
 

Reduce [F]

\[ \int \frac {\sqrt {\sec (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right )}{(a+a \sec (c+d x))^{3/2}} \, dx=\frac {\sqrt {a}\, \left (\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )^{2}}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) c +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}\, \sec \left (d x +c \right )}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) b +\left (\int \frac {\sqrt {\sec \left (d x +c \right )}\, \sqrt {\sec \left (d x +c \right )+1}}{\sec \left (d x +c \right )^{2}+2 \sec \left (d x +c \right )+1}d x \right ) a \right )}{a^{2}} \] Input:

int(sec(d*x+c)^(1/2)*(A+B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(3/2 
),x)
 

Output:

(sqrt(a)*(int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1)*sec(c + d*x)**2)/ 
(sec(c + d*x)**2 + 2*sec(c + d*x) + 1),x)*c + int((sqrt(sec(c + d*x))*sqrt 
(sec(c + d*x) + 1)*sec(c + d*x))/(sec(c + d*x)**2 + 2*sec(c + d*x) + 1),x) 
*b + int((sqrt(sec(c + d*x))*sqrt(sec(c + d*x) + 1))/(sec(c + d*x)**2 + 2* 
sec(c + d*x) + 1),x)*a))/a**2