\(\int \sqrt {a+b \sec ^2(e+f x)} \, dx\) [385]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [C] (verification not implemented)
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 79 \[ \int \sqrt {a+b \sec ^2(e+f x)} \, dx=\frac {\sqrt {a} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}+\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f} \] Output:

a^(1/2)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/f+b^(1/2)*ar 
ctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/f
 

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.30 (sec) , antiderivative size = 284, normalized size of antiderivative = 3.59 \[ \int \sqrt {a+b \sec ^2(e+f x)} \, dx=-\frac {i \left (1+e^{2 i (e+f x)}\right ) \left (2 \sqrt {b} \arctan \left (\frac {\sqrt {b} \left (-1+e^{2 i (e+f x)}\right )}{\sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}}\right )+\sqrt {a} \text {arctanh}\left (\frac {a+2 b+a e^{2 i (e+f x)}}{\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}}\right )-\sqrt {a} \text {arctanh}\left (\frac {a+a e^{2 i (e+f x)}+2 b e^{2 i (e+f x)}}{\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}}\right )\right ) \sqrt {a+b \sec ^2(e+f x)}}{2 \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2} f} \] Input:

Integrate[Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

((-1/2*I)*(1 + E^((2*I)*(e + f*x)))*(2*Sqrt[b]*ArcTan[(Sqrt[b]*(-1 + E^((2 
*I)*(e + f*x))))/Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)) 
)^2]] + Sqrt[a]*ArcTanh[(a + 2*b + a*E^((2*I)*(e + f*x)))/(Sqrt[a]*Sqrt[4* 
b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2])] - Sqrt[a]*ArcTanh 
[(a + a*E^((2*I)*(e + f*x)) + 2*b*E^((2*I)*(e + f*x)))/(Sqrt[a]*Sqrt[4*b*E 
^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2])])*Sqrt[a + b*Sec[e + 
f*x]^2])/(Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]*f)
 

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 77, normalized size of antiderivative = 0.97, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.438, Rules used = {3042, 4616, 301, 224, 219, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \sqrt {a+b \sec ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {a+b \sec (e+f x)^2}dx\)

\(\Big \downarrow \) 4616

\(\displaystyle \frac {\int \frac {\sqrt {b \tan ^2(e+f x)+a+b}}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 301

\(\displaystyle \frac {b \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+a \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {a \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+b \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {a \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {a \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}+\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\sqrt {a} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )+\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{f}\)

Input:

Int[Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

(Sqrt[a]*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]] + S 
qrt[b]*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/f
 

Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 301
Int[((a_) + (b_.)*(x_)^2)^(p_.)/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[b/ 
d   Int[(a + b*x^2)^(p - 1), x], x] - Simp[(b*c - a*d)/d   Int[(a + b*x^2)^ 
(p - 1)/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] 
&& GtQ[p, 0] && (EqQ[p, 1/2] || EqQ[Denominator[p], 4] || (EqQ[p, 2/3] && E 
qQ[b*c + 3*a*d, 0]))
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4616
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff = 
FreeFactors[Tan[e + f*x], x]}, Simp[ff/f   Subst[Int[(a + b + b*ff^2*x^2)^p 
/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] 
&& NeQ[a + b, 0] && NeQ[p, -1]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(352\) vs. \(2(67)=134\).

Time = 5.03 (sec) , antiderivative size = 353, normalized size of antiderivative = 4.47

method result size
default \(\frac {\left (\sqrt {b}\, \ln \left (\frac {-4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sin \left (f x +e \right ) a -4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 a -4 b}{\sin \left (f x +e \right )-1}\right ) \sqrt {-a}+\sqrt {b}\, \ln \left (-\frac {4 \left (-\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+\sin \left (f x +e \right ) a -\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}+a +b \right )}{\sin \left (f x +e \right )+1}\right ) \sqrt {-a}+2 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) a \right ) \sqrt {a +b \sec \left (f x +e \right )^{2}}\, \cos \left (f x +e \right )}{2 f \sqrt {-a}\, \left (1+\cos \left (f x +e \right )\right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}}\) \(353\)

Input:

int((a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

1/2/f/(-a)^(1/2)*(b^(1/2)*ln(4*(-b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e) 
)^2)^(1/2)*cos(f*x+e)+sin(f*x+e)*a-b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+ 
e))^2)^(1/2)-a-b)/(sin(f*x+e)-1))*(-a)^(1/2)+b^(1/2)*ln(-4*(-b^(1/2)*((b+a 
*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+sin(f*x+e)*a-b^(1/2)*((b 
+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)+a+b)/(sin(f*x+e)+1))*(-a)^(1/2)+2 
*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+4* 
(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e)*a)*a)* 
(a+b*sec(f*x+e)^2)^(1/2)*cos(f*x+e)/(1+cos(f*x+e))/((b+a*cos(f*x+e)^2)/(1+ 
cos(f*x+e))^2)^(1/2)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 231 vs. \(2 (67) = 134\).

Time = 0.30 (sec) , antiderivative size = 1227, normalized size of antiderivative = 15.53 \[ \int \sqrt {a+b \sec ^2(e+f x)} \, dx=\text {Too large to display} \] Input:

integrate((a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")
 

Output:

[1/8*(sqrt(-a)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e) 
^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 7 
0*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f* 
x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2* 
(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b 
^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin 
(f*x + e)) + 2*sqrt(b)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - 
b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b 
)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f* 
x + e)^4))/f, 1/8*(4*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*co 
s(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos 
(f*x + e)^2 + b^2)*sin(f*x + e))) + sqrt(-a)*log(128*a^4*cos(f*x + e)^8 - 
256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f 
*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3 
*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^ 
3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 
- (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + 
 e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)))/f, -1/4*(sqrt(a)*arctan(1/4*(8*a 
^2*cos(f*x + e)^5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos 
(f*x + e))*sqrt(a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*...
 

Sympy [F]

\[ \int \sqrt {a+b \sec ^2(e+f x)} \, dx=\int \sqrt {a + b \sec ^{2}{\left (e + f x \right )}}\, dx \] Input:

integrate((a+b*sec(f*x+e)**2)**(1/2),x)
 

Output:

Integral(sqrt(a + b*sec(e + f*x)**2), x)
 

Maxima [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.58 (sec) , antiderivative size = 3227, normalized size of antiderivative = 40.85 \[ \int \sqrt {a+b \sec ^2(e+f x)} \, dx=\text {Too large to display} \] Input:

integrate((a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")
 

Output:

-1/2*(2*sqrt(a)*b^(3/2)*arctan2(a*sin(2*f*x + 2*e) + (a^2*cos(4*f*x + 4*e) 
^2 + a^2*sin(4*f*x + 4*e)^2 + 4*(a^2 + 4*a*b + 4*b^2)*cos(2*f*x + 2*e)^2 + 
 4*(a^2 + 2*a*b)*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) + 4*(a^2 + 4*a*b + 4*b^ 
2)*sin(2*f*x + 2*e)^2 + a^2 + 2*(a^2 + 2*(a^2 + 2*a*b)*cos(2*f*x + 2*e))*c 
os(4*f*x + 4*e) + 4*(a^2 + 2*a*b)*cos(2*f*x + 2*e))^(1/4)*sqrt(a)*sin(1/2* 
arctan2(a*sin(4*f*x + 4*e) + 2*(a + 2*b)*sin(2*f*x + 2*e), a*cos(4*f*x + 4 
*e) + 2*(a + 2*b)*cos(2*f*x + 2*e) + a)), a*cos(2*f*x + 2*e) + (a^2*cos(4* 
f*x + 4*e)^2 + a^2*sin(4*f*x + 4*e)^2 + 4*(a^2 + 4*a*b + 4*b^2)*cos(2*f*x 
+ 2*e)^2 + 4*(a^2 + 2*a*b)*sin(4*f*x + 4*e)*sin(2*f*x + 2*e) + 4*(a^2 + 4* 
a*b + 4*b^2)*sin(2*f*x + 2*e)^2 + a^2 + 2*(a^2 + 2*(a^2 + 2*a*b)*cos(2*f*x 
 + 2*e))*cos(4*f*x + 4*e) + 4*(a^2 + 2*a*b)*cos(2*f*x + 2*e))^(1/4)*sqrt(a 
)*cos(1/2*arctan2(a*sin(4*f*x + 4*e) + 2*(a + 2*b)*sin(2*f*x + 2*e), a*cos 
(4*f*x + 4*e) + 2*(a + 2*b)*cos(2*f*x + 2*e) + a)) + a + 2*b) + a^(3/2)*sq 
rt(b)*arctan2(2*(a^2*cos(4*f*x + 4*e)^2 + a^2*sin(4*f*x + 4*e)^2 + 4*(a^2 
+ 4*a*b + 4*b^2)*cos(2*f*x + 2*e)^2 + 4*(a^2 + 2*a*b)*sin(4*f*x + 4*e)*sin 
(2*f*x + 2*e) + 4*(a^2 + 4*a*b + 4*b^2)*sin(2*f*x + 2*e)^2 + a^2 + 2*(a^2 
+ 2*(a^2 + 2*a*b)*cos(2*f*x + 2*e))*cos(4*f*x + 4*e) + 4*(a^2 + 2*a*b)*cos 
(2*f*x + 2*e))^(1/4)*sqrt(a)*sin(1/2*arctan2(a*sin(4*f*x + 4*e) + 2*(a + 2 
*b)*sin(2*f*x + 2*e), a*cos(4*f*x + 4*e) + 2*(a + 2*b)*cos(2*f*x + 2*e) + 
a)), 2*(a^2*cos(4*f*x + 4*e)^2 + a^2*sin(4*f*x + 4*e)^2 + 4*(a^2 + 4*a*...
 

Giac [F]

\[ \int \sqrt {a+b \sec ^2(e+f x)} \, dx=\int { \sqrt {b \sec \left (f x + e\right )^{2} + a} \,d x } \] Input:

integrate((a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(b*sec(f*x + e)^2 + a), x)
 

Mupad [F(-1)]

Timed out. \[ \int \sqrt {a+b \sec ^2(e+f x)} \, dx=\int \sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}} \,d x \] Input:

int((a + b/cos(e + f*x)^2)^(1/2),x)
 

Output:

int((a + b/cos(e + f*x)^2)^(1/2), x)
 

Reduce [F]

\[ \int \sqrt {a+b \sec ^2(e+f x)} \, dx=\int \sqrt {\sec \left (f x +e \right )^{2} b +a}d x \] Input:

int((a+b*sec(f*x+e)^2)^(1/2),x)
 

Output:

int(sqrt(sec(e + f*x)**2*b + a),x)