\(\int \cot ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx\) [386]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 69 \[ \int \cot ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=-\frac {\sqrt {a} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}-\frac {\cot (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{f} \] Output:

-a^(1/2)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/f-cot(f*x+e 
)*(a+b+b*tan(f*x+e)^2)^(1/2)/f
 

Mathematica [A] (verified)

Time = 0.43 (sec) , antiderivative size = 130, normalized size of antiderivative = 1.88 \[ \int \cot ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=-\frac {\cot (e+f x) \sqrt {a+b \sec ^2(e+f x)} \left (\sqrt {a+b} \sqrt {\frac {a+2 b+a \cos (2 (e+f x))}{a+b}}+\sqrt {2} \sqrt {a} \arcsin \left (\frac {\sqrt {a} \sin (e+f x)}{\sqrt {a+b}}\right ) \sin (e+f x)\right )}{\sqrt {a+b} f \sqrt {\frac {a+2 b+a \cos (2 (e+f x))}{a+b}}} \] Input:

Integrate[Cot[e + f*x]^2*Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

-((Cot[e + f*x]*Sqrt[a + b*Sec[e + f*x]^2]*(Sqrt[a + b]*Sqrt[(a + 2*b + a* 
Cos[2*(e + f*x)])/(a + b)] + Sqrt[2]*Sqrt[a]*ArcSin[(Sqrt[a]*Sin[e + f*x]) 
/Sqrt[a + b]]*Sin[e + f*x]))/(Sqrt[a + b]*f*Sqrt[(a + 2*b + a*Cos[2*(e + f 
*x)])/(a + b)]))
 

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 67, normalized size of antiderivative = 0.97, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.320, Rules used = {3042, 4629, 2075, 377, 25, 27, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt {a+b \sec (e+f x)^2}}{\tan (e+f x)^2}dx\)

\(\Big \downarrow \) 4629

\(\displaystyle \frac {\int \frac {\cot ^2(e+f x) \sqrt {a+b \left (\tan ^2(e+f x)+1\right )}}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 2075

\(\displaystyle \frac {\int \frac {\cot ^2(e+f x) \sqrt {b \tan ^2(e+f x)+a+b}}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 377

\(\displaystyle \frac {\int -\frac {a}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)-\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\cot (e+f x) \left (-\sqrt {a+b \tan ^2(e+f x)+b}\right )-\int \frac {a}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\cot (e+f x) \left (-\sqrt {a+b \tan ^2(e+f x)+b}\right )-a \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\cot (e+f x) \left (-\sqrt {a+b \tan ^2(e+f x)+b}\right )-a \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {-\sqrt {a} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )-\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

Input:

Int[Cot[e + f*x]^2*Sqrt[a + b*Sec[e + f*x]^2],x]
 

Output:

(-(Sqrt[a]*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]]) 
- Cot[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/f
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 377
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> Simp[(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(a*e*( 
m + 1))), x] - Simp[1/(a*e^2*(m + 1))   Int[(e*x)^(m + 2)*(a + b*x^2)^p*(c 
+ d*x^2)^(q - 1)*Simp[b*c*(m + 1) + 2*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) 
+ 2*b*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b 
*c - a*d, 0] && LtQ[0, q, 1] && LtQ[m, -1] && IntBinomialQ[a, b, c, d, e, m 
, 2, p, q, x]
 

rule 2075
Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*Expa 
ndToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{e, m, p, q}, x] && Binomi 
alQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] &&  ! 
BinomialMatchQ[{u, v}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4629
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f 
_.)*(x_)])^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/f   Subst[Int[(d*ff*x)^m*((a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2 
)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Inte 
gerQ[n/2] && (IntegerQ[m/2] || EqQ[n, 2])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(194\) vs. \(2(61)=122\).

Time = 4.00 (sec) , antiderivative size = 195, normalized size of antiderivative = 2.83

method result size
default \(-\frac {\left (\ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) a \sin \left (f x +e \right )+\sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \left (1+\cos \left (f x +e \right )\right )\right ) \sqrt {a +b \sec \left (f x +e \right )^{2}}\, \cot \left (f x +e \right )}{f \sqrt {-a}\, \left (1+\cos \left (f x +e \right )\right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}}\) \(195\)

Input:

int(cot(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)
 

Output:

-1/f/(-a)^(1/2)*(ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/ 
2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*s 
in(f*x+e)*a)*a*sin(f*x+e)+(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2) 
^(1/2)*(1+cos(f*x+e)))*(a+b*sec(f*x+e)^2)^(1/2)/(1+cos(f*x+e))/((b+a*cos(f 
*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cot(f*x+e)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 189 vs. \(2 (61) = 122\).

Time = 0.24 (sec) , antiderivative size = 499, normalized size of antiderivative = 7.23 \[ \int \cot ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\left [\frac {\sqrt {-a} \log \left (128 \, a^{4} \cos \left (f x + e\right )^{8} - 256 \, {\left (a^{4} - a^{3} b\right )} \cos \left (f x + e\right )^{6} + 32 \, {\left (5 \, a^{4} - 14 \, a^{3} b + 5 \, a^{2} b^{2}\right )} \cos \left (f x + e\right )^{4} + a^{4} - 28 \, a^{3} b + 70 \, a^{2} b^{2} - 28 \, a b^{3} + b^{4} - 32 \, {\left (a^{4} - 7 \, a^{3} b + 7 \, a^{2} b^{2} - a b^{3}\right )} \cos \left (f x + e\right )^{2} + 8 \, {\left (16 \, a^{3} \cos \left (f x + e\right )^{7} - 24 \, {\left (a^{3} - a^{2} b\right )} \cos \left (f x + e\right )^{5} + 2 \, {\left (5 \, a^{3} - 14 \, a^{2} b + 5 \, a b^{2}\right )} \cos \left (f x + e\right )^{3} - {\left (a^{3} - 7 \, a^{2} b + 7 \, a b^{2} - b^{3}\right )} \cos \left (f x + e\right )\right )} \sqrt {-a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right )\right ) \sin \left (f x + e\right ) - 8 \, \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{8 \, f \sin \left (f x + e\right )}, \frac {\sqrt {a} \arctan \left (\frac {{\left (8 \, a^{2} \cos \left (f x + e\right )^{5} - 8 \, {\left (a^{2} - a b\right )} \cos \left (f x + e\right )^{3} + {\left (a^{2} - 6 \, a b + b^{2}\right )} \cos \left (f x + e\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{4 \, {\left (2 \, a^{3} \cos \left (f x + e\right )^{4} - a^{2} b + a b^{2} - {\left (a^{3} - 3 \, a^{2} b\right )} \cos \left (f x + e\right )^{2}\right )} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) - 4 \, \sqrt {\frac {a \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{4 \, f \sin \left (f x + e\right )}\right ] \] Input:

integrate(cot(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="fricas")
 

Output:

[1/8*(sqrt(-a)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e) 
^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 7 
0*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f* 
x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2* 
(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b 
^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin 
(f*x + e))*sin(f*x + e) - 8*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*co 
s(f*x + e))/(f*sin(f*x + e)), 1/4*(sqrt(a)*arctan(1/4*(8*a^2*cos(f*x + e)^ 
5 - 8*(a^2 - a*b)*cos(f*x + e)^3 + (a^2 - 6*a*b + b^2)*cos(f*x + e))*sqrt( 
a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((2*a^3*cos(f*x + e)^4 - a^ 
2*b + a*b^2 - (a^3 - 3*a^2*b)*cos(f*x + e)^2)*sin(f*x + e)))*sin(f*x + e) 
- 4*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e))/(f*sin(f*x + 
 e))]
 

Sympy [F]

\[ \int \cot ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int \sqrt {a + b \sec ^{2}{\left (e + f x \right )}} \cot ^{2}{\left (e + f x \right )}\, dx \] Input:

integrate(cot(f*x+e)**2*(a+b*sec(f*x+e)**2)**(1/2),x)
 

Output:

Integral(sqrt(a + b*sec(e + f*x)**2)*cot(e + f*x)**2, x)
 

Maxima [F]

\[ \int \cot ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int { \sqrt {b \sec \left (f x + e\right )^{2} + a} \cot \left (f x + e\right )^{2} \,d x } \] Input:

integrate(cot(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="maxima")
 

Output:

integrate(sqrt(b*sec(f*x + e)^2 + a)*cot(f*x + e)^2, x)
 

Giac [F]

\[ \int \cot ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int { \sqrt {b \sec \left (f x + e\right )^{2} + a} \cot \left (f x + e\right )^{2} \,d x } \] Input:

integrate(cot(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x, algorithm="giac")
 

Output:

integrate(sqrt(b*sec(f*x + e)^2 + a)*cot(f*x + e)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \cot ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int {\mathrm {cot}\left (e+f\,x\right )}^2\,\sqrt {a+\frac {b}{{\cos \left (e+f\,x\right )}^2}} \,d x \] Input:

int(cot(e + f*x)^2*(a + b/cos(e + f*x)^2)^(1/2),x)
 

Output:

int(cot(e + f*x)^2*(a + b/cos(e + f*x)^2)^(1/2), x)
 

Reduce [F]

\[ \int \cot ^2(e+f x) \sqrt {a+b \sec ^2(e+f x)} \, dx=\int \sqrt {\sec \left (f x +e \right )^{2} b +a}\, \cot \left (f x +e \right )^{2}d x \] Input:

int(cot(f*x+e)^2*(a+b*sec(f*x+e)^2)^(1/2),x)
 

Output:

int(sqrt(sec(e + f*x)**2*b + a)*cot(e + f*x)**2,x)