\(\int (a+b \sec ^2(e+f x))^{3/2} \tan ^2(e+f x) \, dx\) [397]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 166 \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan ^2(e+f x) \, dx=-\frac {a^{3/2} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}+\frac {\left (3 a^2-6 a b-b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{8 \sqrt {b} f}+\frac {(5 a+b) \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{8 f}+\frac {b \tan ^3(e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{4 f} \] Output:

-a^(3/2)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/f+1/8*(3*a^ 
2-6*a*b-b^2)*arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/b^(1/2 
)/f+1/8*(5*a+b)*tan(f*x+e)*(a+b+b*tan(f*x+e)^2)^(1/2)/f+1/4*b*tan(f*x+e)^3 
*(a+b+b*tan(f*x+e)^2)^(1/2)/f
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 3.86 (sec) , antiderivative size = 703, normalized size of antiderivative = 4.23 \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan ^2(e+f x) \, dx=\frac {e^{i (e+f x)} \sqrt {4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \cos ^3(e+f x) \left (-\frac {i \left (-1+e^{2 i (e+f x)}\right ) \left (5 a \left (1+e^{2 i (e+f x)}\right )^2-b \left (1-6 e^{2 i (e+f x)}+e^{4 i (e+f x)}\right )\right )}{\left (1+e^{2 i (e+f x)}\right )^4}+\frac {-8 a^{3/2} \sqrt {b} f x+4 i a^{3/2} \sqrt {b} \log \left (a+2 b+a e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )-4 i a^{3/2} \sqrt {b} \log \left (a+a e^{2 i (e+f x)}+2 b e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )-3 a^2 \log \left (\frac {4 \left (\sqrt {b} \left (-1+e^{2 i (e+f x)}\right )-i \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right ) f}{\left (3 a^2-6 a b-b^2\right ) \left (1+e^{2 i (e+f x)}\right )}\right )+6 a b \log \left (\frac {4 \left (\sqrt {b} \left (-1+e^{2 i (e+f x)}\right )-i \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right ) f}{\left (3 a^2-6 a b-b^2\right ) \left (1+e^{2 i (e+f x)}\right )}\right )+b^2 \log \left (\frac {4 \left (\sqrt {b} \left (-1+e^{2 i (e+f x)}\right )-i \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right ) f}{\left (3 a^2-6 a b-b^2\right ) \left (1+e^{2 i (e+f x)}\right )}\right )}{\sqrt {b} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}}\right ) \left (a+b \sec ^2(e+f x)\right )^{3/2}}{2 \sqrt {2} f (a+2 b+a \cos (2 e+2 f x))^{3/2}} \] Input:

Integrate[(a + b*Sec[e + f*x]^2)^(3/2)*Tan[e + f*x]^2,x]
 

Output:

(E^(I*(e + f*x))*Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2*I)*(e + 
f*x))]*Cos[e + f*x]^3*(((-I)*(-1 + E^((2*I)*(e + f*x)))*(5*a*(1 + E^((2*I) 
*(e + f*x)))^2 - b*(1 - 6*E^((2*I)*(e + f*x)) + E^((4*I)*(e + f*x)))))/(1 
+ E^((2*I)*(e + f*x)))^4 + (-8*a^(3/2)*Sqrt[b]*f*x + (4*I)*a^(3/2)*Sqrt[b] 
*Log[a + 2*b + a*E^((2*I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x) 
) + a*(1 + E^((2*I)*(e + f*x)))^2]] - (4*I)*a^(3/2)*Sqrt[b]*Log[a + a*E^(( 
2*I)*(e + f*x)) + 2*b*E^((2*I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + 
 f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] - 3*a^2*Log[(4*(Sqrt[b]*(-1 + E^( 
(2*I)*(e + f*x))) - I*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + 
f*x)))^2])*f)/((3*a^2 - 6*a*b - b^2)*(1 + E^((2*I)*(e + f*x))))] + 6*a*b*L 
og[(4*(Sqrt[b]*(-1 + E^((2*I)*(e + f*x))) - I*Sqrt[4*b*E^((2*I)*(e + f*x)) 
 + a*(1 + E^((2*I)*(e + f*x)))^2])*f)/((3*a^2 - 6*a*b - b^2)*(1 + E^((2*I) 
*(e + f*x))))] + b^2*Log[(4*(Sqrt[b]*(-1 + E^((2*I)*(e + f*x))) - I*Sqrt[4 
*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2])*f)/((3*a^2 - 6*a* 
b - b^2)*(1 + E^((2*I)*(e + f*x))))])/(Sqrt[b]*Sqrt[4*b*E^((2*I)*(e + f*x) 
) + a*(1 + E^((2*I)*(e + f*x)))^2]))*(a + b*Sec[e + f*x]^2)^(3/2))/(2*Sqrt 
[2]*f*(a + 2*b + a*Cos[2*e + 2*f*x])^(3/2))
 

Rubi [A] (verified)

Time = 0.49 (sec) , antiderivative size = 165, normalized size of antiderivative = 0.99, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.440, Rules used = {3042, 4629, 2075, 379, 444, 27, 398, 224, 219, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \tan ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \tan (e+f x)^2 \left (a+b \sec (e+f x)^2\right )^{3/2}dx\)

\(\Big \downarrow \) 4629

\(\displaystyle \frac {\int \frac {\tan ^2(e+f x) \left (a+b \left (\tan ^2(e+f x)+1\right )\right )^{3/2}}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 2075

\(\displaystyle \frac {\int \frac {\tan ^2(e+f x) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 379

\(\displaystyle \frac {\frac {1}{4} \int \frac {\tan ^2(e+f x) \left (b (5 a+b) \tan ^2(e+f x)+(a+b) (4 a+b)\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+\frac {1}{4} b \tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 444

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} (5 a+b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}-\frac {\int \frac {b \left ((a+b) (5 a+b)-\left (3 a^2-6 b a-b^2\right ) \tan ^2(e+f x)\right )}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)}{2 b}\right )+\frac {1}{4} b \tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} (5 a+b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}-\frac {1}{2} \int \frac {(a+b) (5 a+b)-\left (3 a^2-6 b a-b^2\right ) \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)\right )+\frac {1}{4} b \tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} \left (\left (3 a^2-6 a b-b^2\right ) \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)-8 a^2 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)\right )+\frac {1}{2} (5 a+b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )+\frac {1}{4} b \tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} \left (\left (3 a^2-6 a b-b^2\right ) \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}-8 a^2 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)\right )+\frac {1}{2} (5 a+b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )+\frac {1}{4} b \tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} \left (\frac {\left (3 a^2-6 a b-b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {b}}-8 a^2 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)\right )+\frac {1}{2} (5 a+b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )+\frac {1}{4} b \tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} \left (\frac {\left (3 a^2-6 a b-b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {b}}-8 a^2 \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}\right )+\frac {1}{2} (5 a+b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )+\frac {1}{4} b \tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {1}{4} \left (\frac {1}{2} \left (\frac {\left (3 a^2-6 a b-b^2\right ) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )}{\sqrt {b}}-8 a^{3/2} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )\right )+\frac {1}{2} (5 a+b) \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )+\frac {1}{4} b \tan ^3(e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

Input:

Int[(a + b*Sec[e + f*x]^2)^(3/2)*Tan[e + f*x]^2,x]
 

Output:

((b*Tan[e + f*x]^3*Sqrt[a + b + b*Tan[e + f*x]^2])/4 + ((-8*a^(3/2)*ArcTan 
[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]] + ((3*a^2 - 6*a*b 
- b^2)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]])/Sqr 
t[b])/2 + ((5*a + b)*Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/2)/4)/f
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 379
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[d*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 
1)/(b*e*(m + 2*(p + q) + 1))), x] + Simp[1/(b*(m + 2*(p + q) + 1))   Int[(e 
*x)^m*(a + b*x^2)^p*(c + d*x^2)^(q - 2)*Simp[c*((b*c - a*d)*(m + 1) + b*c*2 
*(p + q)) + (d*(b*c - a*d)*(m + 1) + d*2*(q - 1)*(b*c - a*d) + b*c*d*2*(p + 
 q))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b*c - a*d, 0 
] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 444
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q 
_.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[f*g*(g*x)^(m - 1)*(a + b*x^2)^ 
(p + 1)*((c + d*x^2)^(q + 1)/(b*d*(m + 2*(p + q + 1) + 1))), x] - Simp[g^2/ 
(b*d*(m + 2*(p + q + 1) + 1))   Int[(g*x)^(m - 2)*(a + b*x^2)^p*(c + d*x^2) 
^q*Simp[a*f*c*(m - 1) + (a*f*d*(m + 2*q + 1) + b*(f*c*(m + 2*p + 1) - e*d*( 
m + 2*(p + q + 1) + 1)))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, 
q}, x] && GtQ[m, 1]
 

rule 2075
Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*Expa 
ndToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{e, m, p, q}, x] && Binomi 
alQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] &&  ! 
BinomialMatchQ[{u, v}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4629
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f 
_.)*(x_)])^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/f   Subst[Int[(d*ff*x)^m*((a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2 
)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Inte 
gerQ[n/2] && (IntegerQ[m/2] || EqQ[n, 2])
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(970\) vs. \(2(144)=288\).

Time = 11.24 (sec) , antiderivative size = 971, normalized size of antiderivative = 5.85

method result size
default \(\text {Expression too large to display}\) \(971\)

Input:

int((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e)^2,x,method=_RETURNVERBOSE)
 

Output:

-1/16/f/b^(5/2)/(-a)^(1/2)*(a+b*sec(f*x+e)^2)^(3/2)/((b+a*cos(f*x+e)^2)/(1 
+cos(f*x+e))^2)^(1/2)/(a*cos(f*x+e)^3+a*cos(f*x+e)^2+cos(f*x+e)*b+b)*(-3*( 
-a)^(1/2)*cos(f*x+e)^3*ln(4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2) 
^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin( 
f*x+e)*a-a-b)/(sin(f*x+e)+1))*a^2*b^2+6*(-a)^(1/2)*cos(f*x+e)^3*ln(4*(b^(1 
/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*c 
os(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a-a-b)/(sin(f*x+e)+1))*a*b 
^3+(-a)^(1/2)*cos(f*x+e)^3*ln(4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e) 
)^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)- 
sin(f*x+e)*a-a-b)/(sin(f*x+e)+1))*b^4-3*(-a)^(1/2)*cos(f*x+e)^3*ln(-4*(b^( 
1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a* 
cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a+a+b)/(sin(f*x+e)-1))*a^ 
2*b^2+6*(-a)^(1/2)*cos(f*x+e)^3*ln(-4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos( 
f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^ 
(1/2)-sin(f*x+e)*a+a+b)/(sin(f*x+e)-1))*a*b^3+(-a)^(1/2)*cos(f*x+e)^3*ln(- 
4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)* 
((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a+a+b)/(sin(f*x+e)- 
1))*b^4+16*b^(5/2)*cos(f*x+e)^3*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos 
(f*x+e))^2)^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e 
))^2)^(1/2)-4*sin(f*x+e)*a)*a^2+(2*cos(f*x+e)^3+2*cos(f*x+e)^2-4*cos(f*...
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 330 vs. \(2 (144) = 288\).

Time = 1.06 (sec) , antiderivative size = 1627, normalized size of antiderivative = 9.80 \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan ^2(e+f x) \, dx=\text {Too large to display} \] Input:

integrate((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e)^2,x, algorithm="fricas")
 

Output:

[1/32*(4*sqrt(-a)*a*b*cos(f*x + e)^3*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 
 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^ 
4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a 
^2*b^2 - a*b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2* 
b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 
 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + 
b)/cos(f*x + e)^2)*sin(f*x + e)) - (3*a^2 - 6*a*b - b^2)*sqrt(b)*cos(f*x + 
 e)^3*log(((a^2 - 6*a*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e) 
^2 - 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x 
 + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) + 4*((5 
*a*b - b^2)*cos(f*x + e)^2 + 2*b^2)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + 
e)^2)*sin(f*x + e))/(b*f*cos(f*x + e)^3), 1/16*(2*sqrt(-a)*a*b*cos(f*x + e 
)^3*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5* 
a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 
 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 + 
8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14 
*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x 
 + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) 
+ (3*a^2 - 6*a*b - b^2)*sqrt(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2*b 
*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a...
 

Sympy [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan ^2(e+f x) \, dx=\int \left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}} \tan ^{2}{\left (e + f x \right )}\, dx \] Input:

integrate((a+b*sec(f*x+e)**2)**(3/2)*tan(f*x+e)**2,x)
 

Output:

Integral((a + b*sec(e + f*x)**2)**(3/2)*tan(e + f*x)**2, x)
 

Maxima [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan ^2(e+f x) \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \tan \left (f x + e\right )^{2} \,d x } \] Input:

integrate((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e)^2,x, algorithm="maxima")
 

Output:

integrate((b*sec(f*x + e)^2 + a)^(3/2)*tan(f*x + e)^2, x)
 

Giac [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan ^2(e+f x) \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \tan \left (f x + e\right )^{2} \,d x } \] Input:

integrate((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e)^2,x, algorithm="giac")
 

Output:

integrate((b*sec(f*x + e)^2 + a)^(3/2)*tan(f*x + e)^2, x)
 

Mupad [F(-1)]

Timed out. \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan ^2(e+f x) \, dx=\int {\mathrm {tan}\left (e+f\,x\right )}^2\,{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2} \,d x \] Input:

int(tan(e + f*x)^2*(a + b/cos(e + f*x)^2)^(3/2),x)
 

Output:

int(tan(e + f*x)^2*(a + b/cos(e + f*x)^2)^(3/2), x)
 

Reduce [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \tan ^2(e+f x) \, dx=\left (\int \sqrt {\sec \left (f x +e \right )^{2} b +a}\, \sec \left (f x +e \right )^{2} \tan \left (f x +e \right )^{2}d x \right ) b +\left (\int \sqrt {\sec \left (f x +e \right )^{2} b +a}\, \tan \left (f x +e \right )^{2}d x \right ) a \] Input:

int((a+b*sec(f*x+e)^2)^(3/2)*tan(f*x+e)^2,x)
 

Output:

int(sqrt(sec(e + f*x)**2*b + a)*sec(e + f*x)**2*tan(e + f*x)**2,x)*b + int 
(sqrt(sec(e + f*x)**2*b + a)*tan(e + f*x)**2,x)*a