\(\int (a+b \sec ^2(e+f x))^{3/2} \, dx\) [398]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 16, antiderivative size = 118 \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\frac {a^{3/2} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}+\frac {\sqrt {b} (3 a+b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{2 f}+\frac {b \tan (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{2 f} \] Output:

a^(3/2)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/f+1/2*b^(1/2 
)*(3*a+b)*arctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/f+1/2*b*t 
an(f*x+e)*(a+b+b*tan(f*x+e)^2)^(1/2)/f
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 1.24 (sec) , antiderivative size = 527, normalized size of antiderivative = 4.47 \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\frac {\sqrt {2} e^{i (e+f x)} \sqrt {4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \cos ^3(e+f x) \left (-\frac {i b \left (-1+e^{2 i (e+f x)}\right )}{\left (1+e^{2 i (e+f x)}\right )^2}+\frac {2 a^{3/2} f x-i a^{3/2} \log \left (a+2 b+a e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )+i a^{3/2} \log \left (a+a e^{2 i (e+f x)}+2 b e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )-3 a \sqrt {b} \log \left (\frac {-2 \sqrt {b} \left (-1+e^{2 i (e+f x)}\right ) f+2 i \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2} f}{b (3 a+b) \left (1+e^{2 i (e+f x)}\right )}\right )-b^{3/2} \log \left (\frac {-2 \sqrt {b} \left (-1+e^{2 i (e+f x)}\right ) f+2 i \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2} f}{b (3 a+b) \left (1+e^{2 i (e+f x)}\right )}\right )}{\sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}}\right ) \left (a+b \sec ^2(e+f x)\right )^{3/2}}{f (a+2 b+a \cos (2 e+2 f x))^{3/2}} \] Input:

Integrate[(a + b*Sec[e + f*x]^2)^(3/2),x]
 

Output:

(Sqrt[2]*E^(I*(e + f*x))*Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2* 
I)*(e + f*x))]*Cos[e + f*x]^3*(((-I)*b*(-1 + E^((2*I)*(e + f*x))))/(1 + E^ 
((2*I)*(e + f*x)))^2 + (2*a^(3/2)*f*x - I*a^(3/2)*Log[a + 2*b + a*E^((2*I) 
*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + 
f*x)))^2]] + I*a^(3/2)*Log[a + a*E^((2*I)*(e + f*x)) + 2*b*E^((2*I)*(e + f 
*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^ 
2]] - 3*a*Sqrt[b]*Log[(-2*Sqrt[b]*(-1 + E^((2*I)*(e + f*x)))*f + (2*I)*Sqr 
t[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]*f)/(b*(3*a + b) 
*(1 + E^((2*I)*(e + f*x))))] - b^(3/2)*Log[(-2*Sqrt[b]*(-1 + E^((2*I)*(e + 
 f*x)))*f + (2*I)*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x) 
))^2]*f)/(b*(3*a + b)*(1 + E^((2*I)*(e + f*x))))])/Sqrt[4*b*E^((2*I)*(e + 
f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2])*(a + b*Sec[e + f*x]^2)^(3/2))/(f*( 
a + 2*b + a*Cos[2*e + 2*f*x])^(3/2))
 

Rubi [A] (verified)

Time = 0.29 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.98, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {3042, 4616, 318, 398, 224, 219, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \left (a+b \sec (e+f x)^2\right )^{3/2}dx\)

\(\Big \downarrow \) 4616

\(\displaystyle \frac {\int \frac {\left (b \tan ^2(e+f x)+a+b\right )^{3/2}}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 318

\(\displaystyle \frac {\frac {1}{2} \int \frac {b (3 a+b) \tan ^2(e+f x)+(a+b) (2 a+b)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+\frac {1}{2} b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {\frac {1}{2} \left (2 a^2 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+b (3 a+b) \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)\right )+\frac {1}{2} b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {\frac {1}{2} \left (2 a^2 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+b (3 a+b) \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}\right )+\frac {1}{2} b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {1}{2} \left (2 a^2 \int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)+\sqrt {b} (3 a+b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )\right )+\frac {1}{2} b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {\frac {1}{2} \left (2 a^2 \int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}+\sqrt {b} (3 a+b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )\right )+\frac {1}{2} b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {\frac {1}{2} \left (2 a^{3/2} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )+\sqrt {b} (3 a+b) \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )\right )+\frac {1}{2} b \tan (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

Input:

Int[(a + b*Sec[e + f*x]^2)^(3/2),x]
 

Output:

((2*a^(3/2)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]] 
+ Sqrt[b]*(3*a + b)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + 
f*x]^2]])/2 + (b*Tan[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/2)/f
 

Defintions of rubi rules used

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 318
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[d*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1)/(b*(2*(p + q) + 1))), x] + S 
imp[1/(b*(2*(p + q) + 1))   Int[(a + b*x^2)^p*(c + d*x^2)^(q - 2)*Simp[c*(b 
*c*(2*(p + q) + 1) - a*d) + d*(b*c*(2*(p + 2*q - 1) + 1) - a*d*(2*(q - 1) + 
 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b*c - a*d, 0] && G 
tQ[q, 1] && NeQ[2*(p + q) + 1, 0] &&  !IGtQ[p, 1] && IntBinomialQ[a, b, c, 
d, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4616
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff = 
FreeFactors[Tan[e + f*x], x]}, Simp[ff/f   Subst[Int[(a + b + b*ff^2*x^2)^p 
/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] 
&& NeQ[a + b, 0] && NeQ[p, -1]
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(672\) vs. \(2(100)=200\).

Time = 6.28 (sec) , antiderivative size = 673, normalized size of antiderivative = 5.70

method result size
default \(\frac {\left (a +b \sec \left (f x +e \right )^{2}\right )^{\frac {3}{2}} \left (b^{\frac {5}{2}} \sqrt {-a}\, \ln \left (\frac {4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a -4 a -4 b}{\sin \left (f x +e \right )+1}\right ) \cos \left (f x +e \right )^{3}+3 b^{\frac {3}{2}} \sqrt {-a}\, \ln \left (\frac {4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a -4 a -4 b}{\sin \left (f x +e \right )+1}\right ) \cos \left (f x +e \right )^{3} a +b^{\frac {5}{2}} \sqrt {-a}\, \ln \left (-\frac {4 \left (\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-\sin \left (f x +e \right ) a +a +b \right )}{\sin \left (f x +e \right )-1}\right ) \cos \left (f x +e \right )^{3}+3 b^{\frac {3}{2}} \sqrt {-a}\, \ln \left (-\frac {4 \left (\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-\sin \left (f x +e \right ) a +a +b \right )}{\sin \left (f x +e \right )-1}\right ) \cos \left (f x +e \right )^{3} a +4 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) \cos \left (f x +e \right )^{3} a^{2} b +\left (2 \cos \left (f x +e \right )+2\right ) \sin \left (f x +e \right ) \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, b^{2} \cos \left (f x +e \right )\right )}{4 f \sqrt {-a}\, b \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \left (a \cos \left (f x +e \right )^{3}+a \cos \left (f x +e \right )^{2}+\cos \left (f x +e \right ) b +b \right )}\) \(673\)

Input:

int((a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

1/4/f/(-a)^(1/2)/b*(a+b*sec(f*x+e)^2)^(3/2)/((b+a*cos(f*x+e)^2)/(1+cos(f*x 
+e))^2)^(1/2)/(a*cos(f*x+e)^3+a*cos(f*x+e)^2+cos(f*x+e)*b+b)*(b^(5/2)*(-a) 
^(1/2)*ln(4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e 
)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a-a-b)/(s 
in(f*x+e)+1))*cos(f*x+e)^3+3*b^(3/2)*(-a)^(1/2)*ln(4*(b^(1/2)*((b+a*cos(f* 
x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+ 
cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a-a-b)/(sin(f*x+e)+1))*cos(f*x+e)^3*a+b^(5 
/2)*(-a)^(1/2)*ln(-4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)* 
cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)* 
a+a+b)/(sin(f*x+e)-1))*cos(f*x+e)^3+3*b^(3/2)*(-a)^(1/2)*ln(-4*(b^(1/2)*(( 
b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x 
+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a+a+b)/(sin(f*x+e)-1))*cos(f*x+e 
)^3*a+4*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f* 
x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-4*sin(f*x+e) 
*a)*cos(f*x+e)^3*a^2*b+(2*cos(f*x+e)+2)*sin(f*x+e)*(-a)^(1/2)*((b+a*cos(f* 
x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*b^2*cos(f*x+e))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 288 vs. \(2 (100) = 200\).

Time = 0.43 (sec) , antiderivative size = 1457, normalized size of antiderivative = 12.35 \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\text {Too large to display} \] Input:

integrate((a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")
 

Output:

[1/8*(sqrt(-a)*a*cos(f*x + e)*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3* 
b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 
 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 
- a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos( 
f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2* 
b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos( 
f*x + e)^2)*sin(f*x + e)) + (3*a + b)*sqrt(b)*cos(f*x + e)*log(((a^2 - 6*a 
*b + b^2)*cos(f*x + e)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f 
*x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x 
+ e)^2)*sin(f*x + e) + 8*b^2)/cos(f*x + e)^4) + 4*b*sqrt((a*cos(f*x + e)^2 
 + b)/cos(f*x + e)^2)*sin(f*x + e))/(f*cos(f*x + e)), 1/8*(2*(3*a + b)*sqr 
t(-b)*arctan(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqr 
t((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f 
*x + e)))*cos(f*x + e) + sqrt(-a)*a*cos(f*x + e)*log(128*a^4*cos(f*x + e)^ 
8 - 256*(a^4 - a^3*b)*cos(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*c 
os(f*x + e)^4 + a^4 - 28*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7 
*a^3*b + 7*a^2*b^2 - a*b^3)*cos(f*x + e)^2 - 8*(16*a^3*cos(f*x + e)^7 - 24 
*(a^3 - a^2*b)*cos(f*x + e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e 
)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f 
*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e)) + 4*b*sqrt((a*cos(f*x + e)...
 

Sympy [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int \left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}}\, dx \] Input:

integrate((a+b*sec(f*x+e)**2)**(3/2),x)
 

Output:

Integral((a + b*sec(e + f*x)**2)**(3/2), x)
 

Maxima [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \,d x } \] Input:

integrate((a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")
 

Output:

integrate((b*sec(f*x + e)^2 + a)^(3/2), x)
 

Giac [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \,d x } \] Input:

integrate((a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")
 

Output:

integrate((b*sec(f*x + e)^2 + a)^(3/2), x)
 

Mupad [F(-1)]

Timed out. \[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int {\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2} \,d x \] Input:

int((a + b/cos(e + f*x)^2)^(3/2),x)
 

Output:

int((a + b/cos(e + f*x)^2)^(3/2), x)
 

Reduce [F]

\[ \int \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\left (\int \sqrt {\sec \left (f x +e \right )^{2} b +a}d x \right ) a +\left (\int \sqrt {\sec \left (f x +e \right )^{2} b +a}\, \sec \left (f x +e \right )^{2}d x \right ) b \] Input:

int((a+b*sec(f*x+e)^2)^(3/2),x)
 

Output:

int(sqrt(sec(e + f*x)**2*b + a),x)*a + int(sqrt(sec(e + f*x)**2*b + a)*sec 
(e + f*x)**2,x)*b