\(\int \cot ^2(e+f x) (a+b \sec ^2(e+f x))^{3/2} \, dx\) [399]

Optimal result
Mathematica [C] (warning: unable to verify)
Rubi [A] (verified)
Maple [B] (warning: unable to verify)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 25, antiderivative size = 111 \[ \int \cot ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=-\frac {a^{3/2} \arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}+\frac {b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b+b \tan ^2(e+f x)}}\right )}{f}-\frac {(a+b) \cot (e+f x) \sqrt {a+b+b \tan ^2(e+f x)}}{f} \] Output:

-a^(3/2)*arctan(a^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/f+b^(3/2)*a 
rctanh(b^(1/2)*tan(f*x+e)/(a+b+b*tan(f*x+e)^2)^(1/2))/f-(a+b)*cot(f*x+e)*( 
a+b+b*tan(f*x+e)^2)^(1/2)/f
 

Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 3.87 (sec) , antiderivative size = 410, normalized size of antiderivative = 3.69 \[ \int \cot ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\frac {\sqrt {2} e^{i (e+f x)} \sqrt {4 b+a e^{-2 i (e+f x)} \left (1+e^{2 i (e+f x)}\right )^2} \cos ^3(e+f x) \left (-\frac {2 i (a+b)}{-1+e^{2 i (e+f x)}}+\frac {i a^{3/2} \log \left (a+2 b+a e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )-i a^{3/2} \log \left (a+a e^{2 i (e+f x)}+2 b e^{2 i (e+f x)}+\sqrt {a} \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right )-2 \left (a^{3/2} f x+b^{3/2} \log \left (\frac {\left (\sqrt {b} \left (-1+e^{2 i (e+f x)}\right )-i \sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}\right ) f}{b^2 \left (1+e^{2 i (e+f x)}\right )}\right )\right )}{\sqrt {4 b e^{2 i (e+f x)}+a \left (1+e^{2 i (e+f x)}\right )^2}}\right ) \left (a+b \sec ^2(e+f x)\right )^{3/2}}{f (a+2 b+a \cos (2 e+2 f x))^{3/2}} \] Input:

Integrate[Cot[e + f*x]^2*(a + b*Sec[e + f*x]^2)^(3/2),x]
 

Output:

(Sqrt[2]*E^(I*(e + f*x))*Sqrt[4*b + (a*(1 + E^((2*I)*(e + f*x)))^2)/E^((2* 
I)*(e + f*x))]*Cos[e + f*x]^3*(((-2*I)*(a + b))/(-1 + E^((2*I)*(e + f*x))) 
 + (I*a^(3/2)*Log[a + 2*b + a*E^((2*I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2 
*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] - I*a^(3/2)*Log[a + a*E^( 
(2*I)*(e + f*x)) + 2*b*E^((2*I)*(e + f*x)) + Sqrt[a]*Sqrt[4*b*E^((2*I)*(e 
+ f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2]] - 2*(a^(3/2)*f*x + b^(3/2)*Log[( 
(Sqrt[b]*(-1 + E^((2*I)*(e + f*x))) - I*Sqrt[4*b*E^((2*I)*(e + f*x)) + a*( 
1 + E^((2*I)*(e + f*x)))^2])*f)/(b^2*(1 + E^((2*I)*(e + f*x))))]))/Sqrt[4* 
b*E^((2*I)*(e + f*x)) + a*(1 + E^((2*I)*(e + f*x)))^2])*(a + b*Sec[e + f*x 
]^2)^(3/2))/(f*(a + 2*b + a*Cos[2*e + 2*f*x])^(3/2))
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 106, normalized size of antiderivative = 0.95, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {3042, 4629, 2075, 376, 25, 398, 224, 219, 291, 216}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \cot ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sec (e+f x)^2\right )^{3/2}}{\tan (e+f x)^2}dx\)

\(\Big \downarrow \) 4629

\(\displaystyle \frac {\int \frac {\cot ^2(e+f x) \left (a+b \left (\tan ^2(e+f x)+1\right )\right )^{3/2}}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 2075

\(\displaystyle \frac {\int \frac {\cot ^2(e+f x) \left (b \tan ^2(e+f x)+a+b\right )^{3/2}}{\tan ^2(e+f x)+1}d\tan (e+f x)}{f}\)

\(\Big \downarrow \) 376

\(\displaystyle \frac {\int -\frac {a^2-b^2-b^2 \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)-(a+b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\int \frac {a^2-b^2-b^2 \tan ^2(e+f x)}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)-\left ((a+b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}\right )}{f}\)

\(\Big \downarrow \) 398

\(\displaystyle \frac {a^2 \left (-\int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)\right )+b^2 \int \frac {1}{\sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)-(a+b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 224

\(\displaystyle \frac {a^2 \left (-\int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)\right )+b^2 \int \frac {1}{1-\frac {b \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}-(a+b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {a^2 \left (-\int \frac {1}{\left (\tan ^2(e+f x)+1\right ) \sqrt {b \tan ^2(e+f x)+a+b}}d\tan (e+f x)\right )+b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )-(a+b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 291

\(\displaystyle \frac {a^2 \left (-\int \frac {1}{\frac {a \tan ^2(e+f x)}{b \tan ^2(e+f x)+a+b}+1}d\frac {\tan (e+f x)}{\sqrt {b \tan ^2(e+f x)+a+b}}\right )+b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )-(a+b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {a^{3/2} \left (-\arctan \left (\frac {\sqrt {a} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )\right )+b^{3/2} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)+b}}\right )-(a+b) \cot (e+f x) \sqrt {a+b \tan ^2(e+f x)+b}}{f}\)

Input:

Int[Cot[e + f*x]^2*(a + b*Sec[e + f*x]^2)^(3/2),x]
 

Output:

(-(a^(3/2)*ArcTan[(Sqrt[a]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]]) 
+ b^(3/2)*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b + b*Tan[e + f*x]^2]] - 
 (a + b)*Cot[e + f*x]*Sqrt[a + b + b*Tan[e + f*x]^2])/f
 

Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 224
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], 
x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b}, x] &&  !GtQ[a, 0]
 

rule 291
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst 
[Int[1/(c - (b*c - a*d)*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, 
d}, x] && NeQ[b*c - a*d, 0]
 

rule 376
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_) 
, x_Symbol] :> Simp[c*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1 
)/(a*e*(m + 1))), x] - Simp[1/(a*e^2*(m + 1))   Int[(e*x)^(m + 2)*(a + b*x^ 
2)^p*(c + d*x^2)^(q - 2)*Simp[c*(b*c - a*d)*(m + 1) + 2*c*(b*c*(p + 1) + a* 
d*(q - 1)) + d*((b*c - a*d)*(m + 1) + 2*b*c*(p + q))*x^2, x], x], x] /; Fre 
eQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && LtQ[m, -1] & 
& IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 398
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]) 
, x_Symbol] :> Simp[f/b   Int[1/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/ 
b   Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f} 
, x]
 

rule 2075
Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*Expa 
ndToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{e, m, p, q}, x] && Binomi 
alQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] &&  ! 
BinomialMatchQ[{u, v}, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4629
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f 
_.)*(x_)])^(m_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/f   Subst[Int[(d*ff*x)^m*((a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2 
)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && Inte 
gerQ[n/2] && (IntegerQ[m/2] || EqQ[n, 2])
 
Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(476\) vs. \(2(97)=194\).

Time = 3.14 (sec) , antiderivative size = 477, normalized size of antiderivative = 4.30

method result size
default \(\frac {\left (\ln \left (-\frac {4 \left (\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+\sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-\sin \left (f x +e \right ) a +a +b \right )}{\sin \left (f x +e \right )-1}\right ) b^{\frac {3}{2}} \sqrt {-a}\, \sin \left (f x +e \right )+\ln \left (\frac {4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {b}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a -4 a -4 b}{\sin \left (f x +e \right )+1}\right ) b^{\frac {3}{2}} \sqrt {-a}\, \sin \left (f x +e \right )-2 \ln \left (4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \cos \left (f x +e \right )+4 \sqrt {-a}\, \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}-4 \sin \left (f x +e \right ) a \right ) a^{2} \sin \left (f x +e \right )+\left (-2 \cos \left (f x +e \right )-2\right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {-a}\, a +\left (-2 \cos \left (f x +e \right )-2\right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \sqrt {-a}\, b \right ) \left (a +b \sec \left (f x +e \right )^{2}\right )^{\frac {3}{2}} \cos \left (f x +e \right )^{2} \cot \left (f x +e \right )}{2 f \sqrt {-a}\, \left (b +a \cos \left (f x +e \right )^{2}\right ) \sqrt {\frac {b +a \cos \left (f x +e \right )^{2}}{\left (1+\cos \left (f x +e \right )\right )^{2}}}\, \left (1+\cos \left (f x +e \right )\right )}\) \(477\)

Input:

int(cot(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x,method=_RETURNVERBOSE)
                                                                                    
                                                                                    
 

Output:

1/2/f/(-a)^(1/2)*(ln(-4*(b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/ 
2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+ 
e)*a+a+b)/(sin(f*x+e)-1))*b^(3/2)*(-a)^(1/2)*sin(f*x+e)+ln(4*(b^(1/2)*((b+ 
a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+b^(1/2)*((b+a*cos(f*x+e 
)^2)/(1+cos(f*x+e))^2)^(1/2)-sin(f*x+e)*a-a-b)/(sin(f*x+e)+1))*b^(3/2)*(-a 
)^(1/2)*sin(f*x+e)-2*ln(4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2) 
^(1/2)*cos(f*x+e)+4*(-a)^(1/2)*((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2) 
-4*sin(f*x+e)*a)*a^2*sin(f*x+e)+(-2*cos(f*x+e)-2)*((b+a*cos(f*x+e)^2)/(1+c 
os(f*x+e))^2)^(1/2)*(-a)^(1/2)*a+(-2*cos(f*x+e)-2)*((b+a*cos(f*x+e)^2)/(1+ 
cos(f*x+e))^2)^(1/2)*(-a)^(1/2)*b)*(a+b*sec(f*x+e)^2)^(3/2)/(b+a*cos(f*x+e 
)^2)/((b+a*cos(f*x+e)^2)/(1+cos(f*x+e))^2)^(1/2)/(1+cos(f*x+e))*cos(f*x+e) 
^2*cot(f*x+e)
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 286 vs. \(2 (97) = 194\).

Time = 0.46 (sec) , antiderivative size = 1446, normalized size of antiderivative = 13.03 \[ \int \cot ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\text {Too large to display} \] Input:

integrate(cot(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="fricas")
 

Output:

[1/8*(sqrt(-a)*a*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*cos(f*x + 
e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 28*a^3*b + 
 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a*b^3)*cos( 
f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x + e)^5 + 
2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 7*a*b^2 - 
 b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*s 
in(f*x + e))*sin(f*x + e) + 2*b^(3/2)*log(((a^2 - 6*a*b + b^2)*cos(f*x + e 
)^4 + 8*(a*b - b^2)*cos(f*x + e)^2 + 4*((a - b)*cos(f*x + e)^3 + 2*b*cos(f 
*x + e))*sqrt(b)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) 
+ 8*b^2)/cos(f*x + e)^4)*sin(f*x + e) - 8*(a + b)*sqrt((a*cos(f*x + e)^2 + 
 b)/cos(f*x + e)^2)*cos(f*x + e))/(f*sin(f*x + e)), 1/8*(4*sqrt(-b)*b*arct 
an(-1/2*((a - b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt((a*cos(f 
*x + e)^2 + b)/cos(f*x + e)^2)/((a*b*cos(f*x + e)^2 + b^2)*sin(f*x + e)))* 
sin(f*x + e) + sqrt(-a)*a*log(128*a^4*cos(f*x + e)^8 - 256*(a^4 - a^3*b)*c 
os(f*x + e)^6 + 32*(5*a^4 - 14*a^3*b + 5*a^2*b^2)*cos(f*x + e)^4 + a^4 - 2 
8*a^3*b + 70*a^2*b^2 - 28*a*b^3 + b^4 - 32*(a^4 - 7*a^3*b + 7*a^2*b^2 - a* 
b^3)*cos(f*x + e)^2 + 8*(16*a^3*cos(f*x + e)^7 - 24*(a^3 - a^2*b)*cos(f*x 
+ e)^5 + 2*(5*a^3 - 14*a^2*b + 5*a*b^2)*cos(f*x + e)^3 - (a^3 - 7*a^2*b + 
7*a*b^2 - b^3)*cos(f*x + e))*sqrt(-a)*sqrt((a*cos(f*x + e)^2 + b)/cos(f*x 
+ e)^2)*sin(f*x + e))*sin(f*x + e) - 8*(a + b)*sqrt((a*cos(f*x + e)^2 +...
 

Sympy [F]

\[ \int \cot ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int \left (a + b \sec ^{2}{\left (e + f x \right )}\right )^{\frac {3}{2}} \cot ^{2}{\left (e + f x \right )}\, dx \] Input:

integrate(cot(f*x+e)**2*(a+b*sec(f*x+e)**2)**(3/2),x)
 

Output:

Integral((a + b*sec(e + f*x)**2)**(3/2)*cot(e + f*x)**2, x)
 

Maxima [F]

\[ \int \cot ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \cot \left (f x + e\right )^{2} \,d x } \] Input:

integrate(cot(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="maxima")
 

Output:

integrate((b*sec(f*x + e)^2 + a)^(3/2)*cot(f*x + e)^2, x)
 

Giac [F]

\[ \int \cot ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int { {\left (b \sec \left (f x + e\right )^{2} + a\right )}^{\frac {3}{2}} \cot \left (f x + e\right )^{2} \,d x } \] Input:

integrate(cot(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x, algorithm="giac")
 

Output:

integrate((b*sec(f*x + e)^2 + a)^(3/2)*cot(f*x + e)^2, x)
                                                                                    
                                                                                    
 

Mupad [F(-1)]

Timed out. \[ \int \cot ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\int {\mathrm {cot}\left (e+f\,x\right )}^2\,{\left (a+\frac {b}{{\cos \left (e+f\,x\right )}^2}\right )}^{3/2} \,d x \] Input:

int(cot(e + f*x)^2*(a + b/cos(e + f*x)^2)^(3/2),x)
 

Output:

int(cot(e + f*x)^2*(a + b/cos(e + f*x)^2)^(3/2), x)
 

Reduce [F]

\[ \int \cot ^2(e+f x) \left (a+b \sec ^2(e+f x)\right )^{3/2} \, dx=\left (\int \sqrt {\sec \left (f x +e \right )^{2} b +a}\, \cot \left (f x +e \right )^{2} \sec \left (f x +e \right )^{2}d x \right ) b +\left (\int \sqrt {\sec \left (f x +e \right )^{2} b +a}\, \cot \left (f x +e \right )^{2}d x \right ) a \] Input:

int(cot(f*x+e)^2*(a+b*sec(f*x+e)^2)^(3/2),x)
 

Output:

int(sqrt(sec(e + f*x)**2*b + a)*cot(e + f*x)**2*sec(e + f*x)**2,x)*b + int 
(sqrt(sec(e + f*x)**2*b + a)*cot(e + f*x)**2,x)*a