\(\int \frac {x (a+b \arcsin (c x))^2}{(d-c^2 d x^2)^{3/2}} \, dx\) [245]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 27, antiderivative size = 208 \[ \int \frac {x (a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\frac {(a+b \arcsin (c x))^2}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {4 i b \sqrt {1-c^2 x^2} (a+b \arcsin (c x)) \arctan \left (e^{i \arcsin (c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {2 i b^2 \sqrt {1-c^2 x^2} \operatorname {PolyLog}\left (2,-i e^{i \arcsin (c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}}+\frac {2 i b^2 \sqrt {1-c^2 x^2} \operatorname {PolyLog}\left (2,i e^{i \arcsin (c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}} \] Output:

(a+b*arcsin(c*x))^2/c^2/d/(-c^2*d*x^2+d)^(1/2)+4*I*b*(-c^2*x^2+1)^(1/2)*(a 
+b*arcsin(c*x))*arctan(I*c*x+(-c^2*x^2+1)^(1/2))/c^2/d/(-c^2*d*x^2+d)^(1/2 
)-2*I*b^2*(-c^2*x^2+1)^(1/2)*polylog(2,-I*(I*c*x+(-c^2*x^2+1)^(1/2)))/c^2/ 
d/(-c^2*d*x^2+d)^(1/2)+2*I*b^2*(-c^2*x^2+1)^(1/2)*polylog(2,I*(I*c*x+(-c^2 
*x^2+1)^(1/2)))/c^2/d/(-c^2*d*x^2+d)^(1/2)
 

Mathematica [A] (verified)

Time = 1.01 (sec) , antiderivative size = 276, normalized size of antiderivative = 1.33 \[ \int \frac {x (a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\frac {a^2+2 a b \arcsin (c x)+b^2 \arcsin (c x)^2-2 b^2 \sqrt {1-c^2 x^2} \arcsin (c x) \log \left (1-i e^{i \arcsin (c x)}\right )+2 b^2 \sqrt {1-c^2 x^2} \arcsin (c x) \log \left (1+i e^{i \arcsin (c x)}\right )+2 a b \sqrt {1-c^2 x^2} \log \left (\cos \left (\frac {1}{2} \arcsin (c x)\right )-\sin \left (\frac {1}{2} \arcsin (c x)\right )\right )-2 a b \sqrt {1-c^2 x^2} \log \left (\cos \left (\frac {1}{2} \arcsin (c x)\right )+\sin \left (\frac {1}{2} \arcsin (c x)\right )\right )-2 i b^2 \sqrt {1-c^2 x^2} \operatorname {PolyLog}\left (2,-i e^{i \arcsin (c x)}\right )+2 i b^2 \sqrt {1-c^2 x^2} \operatorname {PolyLog}\left (2,i e^{i \arcsin (c x)}\right )}{c^2 d \sqrt {d-c^2 d x^2}} \] Input:

Integrate[(x*(a + b*ArcSin[c*x])^2)/(d - c^2*d*x^2)^(3/2),x]
 

Output:

(a^2 + 2*a*b*ArcSin[c*x] + b^2*ArcSin[c*x]^2 - 2*b^2*Sqrt[1 - c^2*x^2]*Arc 
Sin[c*x]*Log[1 - I*E^(I*ArcSin[c*x])] + 2*b^2*Sqrt[1 - c^2*x^2]*ArcSin[c*x 
]*Log[1 + I*E^(I*ArcSin[c*x])] + 2*a*b*Sqrt[1 - c^2*x^2]*Log[Cos[ArcSin[c* 
x]/2] - Sin[ArcSin[c*x]/2]] - 2*a*b*Sqrt[1 - c^2*x^2]*Log[Cos[ArcSin[c*x]/ 
2] + Sin[ArcSin[c*x]/2]] - (2*I)*b^2*Sqrt[1 - c^2*x^2]*PolyLog[2, (-I)*E^( 
I*ArcSin[c*x])] + (2*I)*b^2*Sqrt[1 - c^2*x^2]*PolyLog[2, I*E^(I*ArcSin[c*x 
])])/(c^2*d*Sqrt[d - c^2*d*x^2])
 

Rubi [A] (verified)

Time = 0.60 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.66, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {5182, 5164, 3042, 4669, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x (a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 5182

\(\displaystyle \frac {(a+b \arcsin (c x))^2}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \int \frac {a+b \arcsin (c x)}{1-c^2 x^2}dx}{c d \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 5164

\(\displaystyle \frac {(a+b \arcsin (c x))^2}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \int \frac {a+b \arcsin (c x)}{\sqrt {1-c^2 x^2}}d\arcsin (c x)}{c^2 d \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {(a+b \arcsin (c x))^2}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \int (a+b \arcsin (c x)) \csc \left (\arcsin (c x)+\frac {\pi }{2}\right )d\arcsin (c x)}{c^2 d \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 4669

\(\displaystyle \frac {(a+b \arcsin (c x))^2}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (-b \int \log \left (1-i e^{i \arcsin (c x)}\right )d\arcsin (c x)+b \int \log \left (1+i e^{i \arcsin (c x)}\right )d\arcsin (c x)-2 i \arctan \left (e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))\right )}{c^2 d \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 2715

\(\displaystyle \frac {(a+b \arcsin (c x))^2}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (i b \int e^{-i \arcsin (c x)} \log \left (1-i e^{i \arcsin (c x)}\right )de^{i \arcsin (c x)}-i b \int e^{-i \arcsin (c x)} \log \left (1+i e^{i \arcsin (c x)}\right )de^{i \arcsin (c x)}-2 i \arctan \left (e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))\right )}{c^2 d \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {(a+b \arcsin (c x))^2}{c^2 d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (-2 i \arctan \left (e^{i \arcsin (c x)}\right ) (a+b \arcsin (c x))+i b \operatorname {PolyLog}\left (2,-i e^{i \arcsin (c x)}\right )-i b \operatorname {PolyLog}\left (2,i e^{i \arcsin (c x)}\right )\right )}{c^2 d \sqrt {d-c^2 d x^2}}\)

Input:

Int[(x*(a + b*ArcSin[c*x])^2)/(d - c^2*d*x^2)^(3/2),x]
 

Output:

(a + b*ArcSin[c*x])^2/(c^2*d*Sqrt[d - c^2*d*x^2]) - (2*b*Sqrt[1 - c^2*x^2] 
*((-2*I)*(a + b*ArcSin[c*x])*ArcTan[E^(I*ArcSin[c*x])] + I*b*PolyLog[2, (- 
I)*E^(I*ArcSin[c*x])] - I*b*PolyLog[2, I*E^(I*ArcSin[c*x])]))/(c^2*d*Sqrt[ 
d - c^2*d*x^2])
 

Defintions of rubi rules used

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4669
Int[csc[(e_.) + Pi*(k_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol 
] :> Simp[-2*(c + d*x)^m*(ArcTanh[E^(I*k*Pi)*E^(I*(e + f*x))]/f), x] + (-Si 
mp[d*(m/f)   Int[(c + d*x)^(m - 1)*Log[1 - E^(I*k*Pi)*E^(I*(e + f*x))], x], 
 x] + Simp[d*(m/f)   Int[(c + d*x)^(m - 1)*Log[1 + E^(I*k*Pi)*E^(I*(e + f*x 
))], x], x]) /; FreeQ[{c, d, e, f}, x] && IntegerQ[2*k] && IGtQ[m, 0]
 

rule 5164
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2), x_Symbo 
l] :> Simp[1/(c*d)   Subst[Int[(a + b*x)^n*Sec[x], x], x, ArcSin[c*x]], x] 
/; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]
 

rule 5182
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_ 
.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(2*e*(p + 
1))), x] + Simp[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   I 
nt[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, 
 b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]
 
Maple [A] (verified)

Time = 0.59 (sec) , antiderivative size = 401, normalized size of antiderivative = 1.93

method result size
default \(\frac {a^{2}}{c^{2} d \sqrt {-c^{2} d \,x^{2}+d}}+b^{2} \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )^{2}}{d^{2} c^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\arcsin \left (c x \right ) \ln \left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )-\arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )-i \operatorname {dilog}\left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )+i \operatorname {dilog}\left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )\right )}{d^{2} c^{2} \left (c^{2} x^{2}-1\right )}\right )+2 a b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )}{d^{2} c^{2} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right )}{d^{2} c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-i\right )}{d^{2} c^{2} \left (c^{2} x^{2}-1\right )}\right )\) \(401\)
parts \(\frac {a^{2}}{c^{2} d \sqrt {-c^{2} d \,x^{2}+d}}+b^{2} \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )^{2}}{d^{2} c^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (\arcsin \left (c x \right ) \ln \left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )-\arcsin \left (c x \right ) \ln \left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )-i \operatorname {dilog}\left (1+i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )+i \operatorname {dilog}\left (1-i \left (i c x +\sqrt {-c^{2} x^{2}+1}\right )\right )\right )}{d^{2} c^{2} \left (c^{2} x^{2}-1\right )}\right )+2 a b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )}{d^{2} c^{2} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}+i\right )}{d^{2} c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (i c x +\sqrt {-c^{2} x^{2}+1}-i\right )}{d^{2} c^{2} \left (c^{2} x^{2}-1\right )}\right )\) \(401\)

Input:

int(x*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

a^2/c^2/d/(-c^2*d*x^2+d)^(1/2)+b^2*(-(-d*(c^2*x^2-1))^(1/2)/d^2/c^2/(c^2*x 
^2-1)*arcsin(c*x)^2-2*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)*(arcsin(c* 
x)*ln(1+I*(I*c*x+(-c^2*x^2+1)^(1/2)))-arcsin(c*x)*ln(1-I*(I*c*x+(-c^2*x^2+ 
1)^(1/2)))-I*dilog(1+I*(I*c*x+(-c^2*x^2+1)^(1/2)))+I*dilog(1-I*(I*c*x+(-c^ 
2*x^2+1)^(1/2))))/d^2/c^2/(c^2*x^2-1))+2*a*b*(-(-d*(c^2*x^2-1))^(1/2)/d^2/ 
c^2/(c^2*x^2-1)*arcsin(c*x)+(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/d^2/ 
c^2/(c^2*x^2-1)*ln(I*c*x+(-c^2*x^2+1)^(1/2)+I)-(-c^2*x^2+1)^(1/2)*(-d*(c^2 
*x^2-1))^(1/2)/d^2/c^2/(c^2*x^2-1)*ln(I*c*x+(-c^2*x^2+1)^(1/2)-I))
 

Fricas [F]

\[ \int \frac {x (a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )}^{2} x}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="fricas" 
)
                                                                                    
                                                                                    
 

Output:

integral(sqrt(-c^2*d*x^2 + d)*(b^2*x*arcsin(c*x)^2 + 2*a*b*x*arcsin(c*x) + 
 a^2*x)/(c^4*d^2*x^4 - 2*c^2*d^2*x^2 + d^2), x)
 

Sympy [F]

\[ \int \frac {x (a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\int \frac {x \left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate(x*(a+b*asin(c*x))**2/(-c**2*d*x**2+d)**(3/2),x)
 

Output:

Integral(x*(a + b*asin(c*x))**2/(-d*(c*x - 1)*(c*x + 1))**(3/2), x)
 

Maxima [F]

\[ \int \frac {x (a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )}^{2} x}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(x*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="maxima" 
)
 

Output:

sqrt(d)*integrate((b^2*x*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1))^2 + 2* 
a*b*x*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)))*sqrt(c*x + 1)*sqrt(-c*x 
+ 1)/(c^4*d^2*x^4 - 2*c^2*d^2*x^2 + d^2), x) + a^2/(sqrt(-c^2*d*x^2 + d)*c 
^2*d)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {x (a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(x*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m i_lex_is_greater E 
rror: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {x (a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\int \frac {x\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{{\left (d-c^2\,d\,x^2\right )}^{3/2}} \,d x \] Input:

int((x*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(3/2),x)
 

Output:

int((x*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(3/2), x)
 

Reduce [F]

\[ \int \frac {x (a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\frac {-2 \sqrt {-c^{2} x^{2}+1}\, \left (\int \frac {\mathit {asin} \left (c x \right ) x}{\sqrt {-c^{2} x^{2}+1}\, c^{2} x^{2}-\sqrt {-c^{2} x^{2}+1}}d x \right ) a b \,c^{2}-\sqrt {-c^{2} x^{2}+1}\, \left (\int \frac {\mathit {asin} \left (c x \right )^{2} x}{\sqrt {-c^{2} x^{2}+1}\, c^{2} x^{2}-\sqrt {-c^{2} x^{2}+1}}d x \right ) b^{2} c^{2}+a^{2}}{\sqrt {d}\, \sqrt {-c^{2} x^{2}+1}\, c^{2} d} \] Input:

int(x*(a+b*asin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x)
 

Output:

( - 2*sqrt( - c**2*x**2 + 1)*int((asin(c*x)*x)/(sqrt( - c**2*x**2 + 1)*c** 
2*x**2 - sqrt( - c**2*x**2 + 1)),x)*a*b*c**2 - sqrt( - c**2*x**2 + 1)*int( 
(asin(c*x)**2*x)/(sqrt( - c**2*x**2 + 1)*c**2*x**2 - sqrt( - c**2*x**2 + 1 
)),x)*b**2*c**2 + a**2)/(sqrt(d)*sqrt( - c**2*x**2 + 1)*c**2*d)