\(\int \frac {(a+b \arcsin (c x))^2}{(d-c^2 d x^2)^{3/2}} \, dx\) [246]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 26, antiderivative size = 195 \[ \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\frac {x (a+b \arcsin (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {i \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{c d \sqrt {d-c^2 d x^2}}+\frac {2 b \sqrt {1-c^2 x^2} (a+b \arcsin (c x)) \log \left (1+e^{2 i \arcsin (c x)}\right )}{c d \sqrt {d-c^2 d x^2}}-\frac {i b^2 \sqrt {1-c^2 x^2} \operatorname {PolyLog}\left (2,-e^{2 i \arcsin (c x)}\right )}{c d \sqrt {d-c^2 d x^2}} \] Output:

x*(a+b*arcsin(c*x))^2/d/(-c^2*d*x^2+d)^(1/2)-I*(-c^2*x^2+1)^(1/2)*(a+b*arc 
sin(c*x))^2/c/d/(-c^2*d*x^2+d)^(1/2)+2*b*(-c^2*x^2+1)^(1/2)*(a+b*arcsin(c* 
x))*ln(1+(I*c*x+(-c^2*x^2+1)^(1/2))^2)/c/d/(-c^2*d*x^2+d)^(1/2)-I*b^2*(-c^ 
2*x^2+1)^(1/2)*polylog(2,-(I*c*x+(-c^2*x^2+1)^(1/2))^2)/c/d/(-c^2*d*x^2+d) 
^(1/2)
 

Mathematica [A] (verified)

Time = 0.19 (sec) , antiderivative size = 165, normalized size of antiderivative = 0.85 \[ \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\frac {b^2 \left (c x-i \sqrt {1-c^2 x^2}\right ) \arcsin (c x)^2+2 b \arcsin (c x) \left (a c x+b \sqrt {1-c^2 x^2} \log \left (1+e^{2 i \arcsin (c x)}\right )\right )+a \left (a c x+b \sqrt {1-c^2 x^2} \log \left (1-c^2 x^2\right )\right )-i b^2 \sqrt {1-c^2 x^2} \operatorname {PolyLog}\left (2,-e^{2 i \arcsin (c x)}\right )}{c d \sqrt {d-c^2 d x^2}} \] Input:

Integrate[(a + b*ArcSin[c*x])^2/(d - c^2*d*x^2)^(3/2),x]
 

Output:

(b^2*(c*x - I*Sqrt[1 - c^2*x^2])*ArcSin[c*x]^2 + 2*b*ArcSin[c*x]*(a*c*x + 
b*Sqrt[1 - c^2*x^2]*Log[1 + E^((2*I)*ArcSin[c*x])]) + a*(a*c*x + b*Sqrt[1 
- c^2*x^2]*Log[1 - c^2*x^2]) - I*b^2*Sqrt[1 - c^2*x^2]*PolyLog[2, -E^((2*I 
)*ArcSin[c*x])])/(c*d*Sqrt[d - c^2*d*x^2])
 

Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 140, normalized size of antiderivative = 0.72, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.269, Rules used = {5160, 5180, 3042, 4202, 2620, 2715, 2838}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 5160

\(\displaystyle \frac {x (a+b \arcsin (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b c \sqrt {1-c^2 x^2} \int \frac {x (a+b \arcsin (c x))}{1-c^2 x^2}dx}{d \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 5180

\(\displaystyle \frac {x (a+b \arcsin (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \int \frac {c x (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}}d\arcsin (c x)}{c d \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {x (a+b \arcsin (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \int (a+b \arcsin (c x)) \tan (\arcsin (c x))d\arcsin (c x)}{c d \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 4202

\(\displaystyle \frac {x (a+b \arcsin (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (\frac {i (a+b \arcsin (c x))^2}{2 b}-2 i \int \frac {e^{2 i \arcsin (c x)} (a+b \arcsin (c x))}{1+e^{2 i \arcsin (c x)}}d\arcsin (c x)\right )}{c d \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 2620

\(\displaystyle \frac {x (a+b \arcsin (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (\frac {i (a+b \arcsin (c x))^2}{2 b}-2 i \left (\frac {1}{2} i b \int \log \left (1+e^{2 i \arcsin (c x)}\right )d\arcsin (c x)-\frac {1}{2} i \log \left (1+e^{2 i \arcsin (c x)}\right ) (a+b \arcsin (c x))\right )\right )}{c d \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 2715

\(\displaystyle \frac {x (a+b \arcsin (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (\frac {i (a+b \arcsin (c x))^2}{2 b}-2 i \left (\frac {1}{4} b \int e^{-2 i \arcsin (c x)} \log \left (1+e^{2 i \arcsin (c x)}\right )de^{2 i \arcsin (c x)}-\frac {1}{2} i \log \left (1+e^{2 i \arcsin (c x)}\right ) (a+b \arcsin (c x))\right )\right )}{c d \sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 2838

\(\displaystyle \frac {x (a+b \arcsin (c x))^2}{d \sqrt {d-c^2 d x^2}}-\frac {2 b \sqrt {1-c^2 x^2} \left (\frac {i (a+b \arcsin (c x))^2}{2 b}-2 i \left (-\frac {1}{2} i \log \left (1+e^{2 i \arcsin (c x)}\right ) (a+b \arcsin (c x))-\frac {1}{4} b \operatorname {PolyLog}\left (2,-e^{2 i \arcsin (c x)}\right )\right )\right )}{c d \sqrt {d-c^2 d x^2}}\)

Input:

Int[(a + b*ArcSin[c*x])^2/(d - c^2*d*x^2)^(3/2),x]
 

Output:

(x*(a + b*ArcSin[c*x])^2)/(d*Sqrt[d - c^2*d*x^2]) - (2*b*Sqrt[1 - c^2*x^2] 
*(((I/2)*(a + b*ArcSin[c*x])^2)/b - (2*I)*((-1/2*I)*(a + b*ArcSin[c*x])*Lo 
g[1 + E^((2*I)*ArcSin[c*x])] - (b*PolyLog[2, -E^((2*I)*ArcSin[c*x])])/4))) 
/(c*d*Sqrt[d - c^2*d*x^2])
 

Defintions of rubi rules used

rule 2620
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/ 
((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp 
[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x] - Si 
mp[d*(m/(b*f*g*n*Log[F]))   Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x 
)))^n/a)], x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
 

rule 2715
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] 
:> Simp[1/(d*e*n*Log[F])   Subst[Int[Log[a + b*x]/x, x], x, (F^(e*(c + d*x) 
))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
 

rule 2838
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2 
, (-c)*e*x^n]/n, x] /; FreeQ[{c, d, e, n}, x] && EqQ[c*d, 1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4202
Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[I 
*((c + d*x)^(m + 1)/(d*(m + 1))), x] - Simp[2*I   Int[(c + d*x)^m*(E^(2*I*( 
e + f*x))/(1 + E^(2*I*(e + f*x)))), x], x] /; FreeQ[{c, d, e, f}, x] && IGt 
Q[m, 0]
 

rule 5160
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2)^(3/2), x 
_Symbol] :> Simp[x*((a + b*ArcSin[c*x])^n/(d*Sqrt[d + e*x^2])), x] - Simp[b 
*c*(n/d)*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]   Int[x*((a + b*ArcSin[c*x 
])^(n - 1)/(1 - c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d 
 + e, 0] && GtQ[n, 0]
 

rule 5180
Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_))/((d_) + (e_.)*(x_)^2), 
x_Symbol] :> Simp[-e^(-1)   Subst[Int[(a + b*x)^n*Tan[x], x], x, ArcSin[c*x 
]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]
 
Maple [A] (verified)

Time = 0.52 (sec) , antiderivative size = 354, normalized size of antiderivative = 1.82

method result size
default \(\frac {a^{2} x}{d \sqrt {-c^{2} d \,x^{2}+d}}+b^{2} \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}+c x \right ) \arcsin \left (c x \right )^{2}}{c \,d^{2} \left (c^{2} x^{2}-1\right )}+\frac {i \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 i \arcsin \left (c x \right ) \ln \left (1+\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}\right )+2 \arcsin \left (c x \right )^{2}+\operatorname {polylog}\left (2, -\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}\right )\right )}{c \,d^{2} \left (c^{2} x^{2}-1\right )}\right )+\frac {2 i a b \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )}{c \,d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) x}{d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (1+\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}\right )}{c \,d^{2} \left (c^{2} x^{2}-1\right )}\) \(354\)
parts \(\frac {a^{2} x}{d \sqrt {-c^{2} d \,x^{2}+d}}+b^{2} \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}+c x \right ) \arcsin \left (c x \right )^{2}}{c \,d^{2} \left (c^{2} x^{2}-1\right )}+\frac {i \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 i \arcsin \left (c x \right ) \ln \left (1+\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}\right )+2 \arcsin \left (c x \right )^{2}+\operatorname {polylog}\left (2, -\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}\right )\right )}{c \,d^{2} \left (c^{2} x^{2}-1\right )}\right )+\frac {2 i a b \sqrt {-c^{2} x^{2}+1}\, \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right )}{c \,d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) x}{d^{2} \left (c^{2} x^{2}-1\right )}-\frac {2 a b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \ln \left (1+\left (i c x +\sqrt {-c^{2} x^{2}+1}\right )^{2}\right )}{c \,d^{2} \left (c^{2} x^{2}-1\right )}\) \(354\)

Input:

int((a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

a^2*x/d/(-c^2*d*x^2+d)^(1/2)+b^2*(-(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^ 
(1/2)+c*x)*arcsin(c*x)^2/c/d^2/(c^2*x^2-1)+I*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x 
^2-1))^(1/2)/c/d^2/(c^2*x^2-1)*(2*I*arcsin(c*x)*ln(1+(I*c*x+(-c^2*x^2+1)^( 
1/2))^2)+2*arcsin(c*x)^2+polylog(2,-(I*c*x+(-c^2*x^2+1)^(1/2))^2)))+2*I*a* 
b*(-c^2*x^2+1)^(1/2)*(-d*(c^2*x^2-1))^(1/2)/c/d^2/(c^2*x^2-1)*arcsin(c*x)- 
2*a*b*(-d*(c^2*x^2-1))^(1/2)*arcsin(c*x)/d^2/(c^2*x^2-1)*x-2*a*b*(-d*(c^2* 
x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c/d^2/(c^2*x^2-1)*ln(1+(I*c*x+(-c^2*x^2+1 
)^(1/2))^2)
 

Fricas [F]

\[ \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="fricas")
 

Output:

integral(sqrt(-c^2*d*x^2 + d)*(b^2*arcsin(c*x)^2 + 2*a*b*arcsin(c*x) + a^2 
)/(c^4*d^2*x^4 - 2*c^2*d^2*x^2 + d^2), x)
 

Sympy [F]

\[ \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\int \frac {\left (a + b \operatorname {asin}{\left (c x \right )}\right )^{2}}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}}}\, dx \] Input:

integrate((a+b*asin(c*x))**2/(-c**2*d*x**2+d)**(3/2),x)
 

Output:

Integral((a + b*asin(c*x))**2/(-d*(c*x - 1)*(c*x + 1))**(3/2), x)
 

Maxima [F]

\[ \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\int { \frac {{\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate((a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="maxima")
                                                                                    
                                                                                    
 

Output:

2*a*b*x*arcsin(c*x)/(sqrt(-c^2*d*x^2 + d)*d) - b^2*integrate(arctan2(c*x, 
sqrt(c*x + 1)*sqrt(-c*x + 1))^2/((c^2*d*x^2 - d)*sqrt(c*x + 1)*sqrt(-c*x + 
 1)), x)/sqrt(d) + a^2*x/(sqrt(-c^2*d*x^2 + d)*d) - a*b*log(x^2 - 1/c^2)/( 
c*d^(3/2))
 

Giac [F(-2)]

Exception generated. \[ \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\text {Exception raised: TypeError} \] Input:

integrate((a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:index.cc index_m i_lex_is_greater E 
rror: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\int \frac {{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{{\left (d-c^2\,d\,x^2\right )}^{3/2}} \,d x \] Input:

int((a + b*asin(c*x))^2/(d - c^2*d*x^2)^(3/2),x)
 

Output:

int((a + b*asin(c*x))^2/(d - c^2*d*x^2)^(3/2), x)
 

Reduce [F]

\[ \int \frac {(a+b \arcsin (c x))^2}{\left (d-c^2 d x^2\right )^{3/2}} \, dx=\frac {-2 \sqrt {-c^{2} x^{2}+1}\, \left (\int \frac {\mathit {asin} \left (c x \right )}{\sqrt {-c^{2} x^{2}+1}\, c^{2} x^{2}-\sqrt {-c^{2} x^{2}+1}}d x \right ) a b -\sqrt {-c^{2} x^{2}+1}\, \left (\int \frac {\mathit {asin} \left (c x \right )^{2}}{\sqrt {-c^{2} x^{2}+1}\, c^{2} x^{2}-\sqrt {-c^{2} x^{2}+1}}d x \right ) b^{2}+a^{2} x}{\sqrt {d}\, \sqrt {-c^{2} x^{2}+1}\, d} \] Input:

int((a+b*asin(c*x))^2/(-c^2*d*x^2+d)^(3/2),x)
 

Output:

( - 2*sqrt( - c**2*x**2 + 1)*int(asin(c*x)/(sqrt( - c**2*x**2 + 1)*c**2*x* 
*2 - sqrt( - c**2*x**2 + 1)),x)*a*b - sqrt( - c**2*x**2 + 1)*int(asin(c*x) 
**2/(sqrt( - c**2*x**2 + 1)*c**2*x**2 - sqrt( - c**2*x**2 + 1)),x)*b**2 + 
a**2*x)/(sqrt(d)*sqrt( - c**2*x**2 + 1)*d)