\(\int \frac {\sinh ^3(c+d x)}{(a-b \sinh ^4(c+d x))^2} \, dx\) [219]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 24, antiderivative size = 186 \[ \int \frac {\sinh ^3(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=-\frac {\arctan \left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{8 \sqrt {a} \left (\sqrt {a}-\sqrt {b}\right )^{3/2} b^{3/4} d}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{8 \sqrt {a} \left (\sqrt {a}+\sqrt {b}\right )^{3/2} b^{3/4} d}-\frac {\cosh (c+d x) \left (2-\cosh ^2(c+d x)\right )}{4 (a-b) d \left (a-b+2 b \cosh ^2(c+d x)-b \cosh ^4(c+d x)\right )} \] Output:

-1/8*arctan(b^(1/4)*cosh(d*x+c)/(a^(1/2)-b^(1/2))^(1/2))/a^(1/2)/(a^(1/2)- 
b^(1/2))^(3/2)/b^(3/4)/d+1/8*arctanh(b^(1/4)*cosh(d*x+c)/(a^(1/2)+b^(1/2)) 
^(1/2))/a^(1/2)/(a^(1/2)+b^(1/2))^(3/2)/b^(3/4)/d-1/4*cosh(d*x+c)*(2-cosh( 
d*x+c)^2)/(a-b)/d/(a-b+2*b*cosh(d*x+c)^2-b*cosh(d*x+c)^4)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.68 (sec) , antiderivative size = 422, normalized size of antiderivative = 2.27 \[ \int \frac {\sinh ^3(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=-\frac {\frac {16 (-5 \cosh (c+d x)+\cosh (3 (c+d x)))}{-8 a+3 b-4 b \cosh (2 (c+d x))+b \cosh (4 (c+d x))}+\text {RootSum}\left [b-4 b \text {$\#$1}^2-16 a \text {$\#$1}^4+6 b \text {$\#$1}^4-4 b \text {$\#$1}^6+b \text {$\#$1}^8\&,\frac {-c-d x-2 \log \left (-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )+\cosh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right )+7 c \text {$\#$1}^2+7 d x \text {$\#$1}^2+14 \log \left (-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )+\cosh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right ) \text {$\#$1}^2-7 c \text {$\#$1}^4-7 d x \text {$\#$1}^4-14 \log \left (-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )+\cosh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right ) \text {$\#$1}^4+c \text {$\#$1}^6+d x \text {$\#$1}^6+2 \log \left (-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )+\cosh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right ) \text {$\#$1}^6}{-b \text {$\#$1}-8 a \text {$\#$1}^3+3 b \text {$\#$1}^3-3 b \text {$\#$1}^5+b \text {$\#$1}^7}\&\right ]}{32 (a-b) d} \] Input:

Integrate[Sinh[c + d*x]^3/(a - b*Sinh[c + d*x]^4)^2,x]
 

Output:

-1/32*((16*(-5*Cosh[c + d*x] + Cosh[3*(c + d*x)]))/(-8*a + 3*b - 4*b*Cosh[ 
2*(c + d*x)] + b*Cosh[4*(c + d*x)]) + RootSum[b - 4*b*#1^2 - 16*a*#1^4 + 6 
*b*#1^4 - 4*b*#1^6 + b*#1^8 & , (-c - d*x - 2*Log[-Cosh[(c + d*x)/2] - Sin 
h[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1] + 7*c*#1^2 + 
 7*d*x*#1^2 + 14*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d* 
x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^2 - 7*c*#1^4 - 7*d*x*#1^4 - 14*Log[-Co 
sh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x 
)/2]*#1]*#1^4 + c*#1^6 + d*x*#1^6 + 2*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d 
*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^6)/(-(b*#1) - 8*a 
*#1^3 + 3*b*#1^3 - 3*b*#1^5 + b*#1^7) & ])/((a - b)*d)
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 211, normalized size of antiderivative = 1.13, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {3042, 26, 3694, 1492, 27, 1480, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sinh ^3(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {i \sin (i c+i d x)^3}{\left (a-b \sin (i c+i d x)^4\right )^2}dx\)

\(\Big \downarrow \) 26

\(\displaystyle i \int \frac {\sin (i c+i d x)^3}{\left (a-b \sin (i c+i d x)^4\right )^2}dx\)

\(\Big \downarrow \) 3694

\(\displaystyle -\frac {\int \frac {1-\cosh ^2(c+d x)}{\left (-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)+a-b\right )^2}d\cosh (c+d x)}{d}\)

\(\Big \downarrow \) 1492

\(\displaystyle -\frac {\frac {\cosh (c+d x) \left (2-\cosh ^2(c+d x)\right )}{4 (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}-\frac {\int -\frac {2 a b \left (2-\cosh ^2(c+d x)\right )}{-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)+a-b}d\cosh (c+d x)}{8 a b (a-b)}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\int \frac {2-\cosh ^2(c+d x)}{-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)+a-b}d\cosh (c+d x)}{4 (a-b)}+\frac {\cosh (c+d x) \left (2-\cosh ^2(c+d x)\right )}{4 (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}}{d}\)

\(\Big \downarrow \) 1480

\(\displaystyle -\frac {\frac {-\frac {1}{2} \left (\frac {\sqrt {b}}{\sqrt {a}}+1\right ) \int \frac {1}{-b \cosh ^2(c+d x)-\left (\sqrt {a}-\sqrt {b}\right ) \sqrt {b}}d\cosh (c+d x)-\frac {1}{2} \left (1-\frac {\sqrt {b}}{\sqrt {a}}\right ) \int \frac {1}{\left (\sqrt {a}+\sqrt {b}\right ) \sqrt {b}-b \cosh ^2(c+d x)}d\cosh (c+d x)}{4 (a-b)}+\frac {\cosh (c+d x) \left (2-\cosh ^2(c+d x)\right )}{4 (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}}{d}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {\frac {\frac {\left (\frac {\sqrt {b}}{\sqrt {a}}+1\right ) \arctan \left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 b^{3/4} \sqrt {\sqrt {a}-\sqrt {b}}}-\frac {1}{2} \left (1-\frac {\sqrt {b}}{\sqrt {a}}\right ) \int \frac {1}{\left (\sqrt {a}+\sqrt {b}\right ) \sqrt {b}-b \cosh ^2(c+d x)}d\cosh (c+d x)}{4 (a-b)}+\frac {\cosh (c+d x) \left (2-\cosh ^2(c+d x)\right )}{4 (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {\frac {\frac {\left (\frac {\sqrt {b}}{\sqrt {a}}+1\right ) \arctan \left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 b^{3/4} \sqrt {\sqrt {a}-\sqrt {b}}}-\frac {\left (1-\frac {\sqrt {b}}{\sqrt {a}}\right ) \text {arctanh}\left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{2 b^{3/4} \sqrt {\sqrt {a}+\sqrt {b}}}}{4 (a-b)}+\frac {\cosh (c+d x) \left (2-\cosh ^2(c+d x)\right )}{4 (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}}{d}\)

Input:

Int[Sinh[c + d*x]^3/(a - b*Sinh[c + d*x]^4)^2,x]
 

Output:

-(((((1 + Sqrt[b]/Sqrt[a])*ArcTan[(b^(1/4)*Cosh[c + d*x])/Sqrt[Sqrt[a] - S 
qrt[b]]])/(2*Sqrt[Sqrt[a] - Sqrt[b]]*b^(3/4)) - ((1 - Sqrt[b]/Sqrt[a])*Arc 
Tanh[(b^(1/4)*Cosh[c + d*x])/Sqrt[Sqrt[a] + Sqrt[b]]])/(2*Sqrt[Sqrt[a] + S 
qrt[b]]*b^(3/4)))/(4*(a - b)) + (Cosh[c + d*x]*(2 - Cosh[c + d*x]^2))/(4*( 
a - b)*(a - b + 2*b*Cosh[c + d*x]^2 - b*Cosh[c + d*x]^4)))/d)
 

Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 1492
Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symb 
ol] :> Simp[x*(a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2)*((a + b*x^2 + 
 c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 
 - 4*a*c))   Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 
7)*(d*b - 2*a*e)*c*x^2, x]*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, 
 b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && 
 LtQ[p, -1] && IntegerQ[2*p]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3694
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[-ff/f 
Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - 2*b*ff^2*x^2 + b*ff^4*x^4)^p, 
 x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 
 1)/2]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(321\) vs. \(2(144)=288\).

Time = 6.11 (sec) , antiderivative size = 322, normalized size of antiderivative = 1.73

method result size
derivativedivides \(\frac {\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{2 \left (a -b \right )}-\frac {\left (3 a -8 b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{2 a \left (a -b \right )}+\frac {5 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{2 \left (a -b \right )}-\frac {1}{2 \left (a -b \right )}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} a -4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} a +6 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a -16 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +a}+\frac {a \left (\frac {\left (-b -\sqrt {a b}\right ) \arctan \left (\frac {2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \sqrt {a b}-2 a}{4 \sqrt {-a b +\sqrt {a b}\, a}}\right )}{4 a b \sqrt {-a b +\sqrt {a b}\, a}}-\frac {\left (-b +\sqrt {a b}\right ) \arctan \left (\frac {-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \sqrt {a b}+2 a}{4 \sqrt {-a b -\sqrt {a b}\, a}}\right )}{4 a b \sqrt {-a b -\sqrt {a b}\, a}}\right )}{2 a -2 b}}{d}\) \(322\)
default \(\frac {\frac {-\frac {\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{2 \left (a -b \right )}-\frac {\left (3 a -8 b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{2 a \left (a -b \right )}+\frac {5 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{2 \left (a -b \right )}-\frac {1}{2 \left (a -b \right )}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} a -4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} a +6 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a -16 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +a}+\frac {a \left (\frac {\left (-b -\sqrt {a b}\right ) \arctan \left (\frac {2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \sqrt {a b}-2 a}{4 \sqrt {-a b +\sqrt {a b}\, a}}\right )}{4 a b \sqrt {-a b +\sqrt {a b}\, a}}-\frac {\left (-b +\sqrt {a b}\right ) \arctan \left (\frac {-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \sqrt {a b}+2 a}{4 \sqrt {-a b -\sqrt {a b}\, a}}\right )}{4 a b \sqrt {-a b -\sqrt {a b}\, a}}\right )}{2 a -2 b}}{d}\) \(322\)
risch \(\frac {{\mathrm e}^{d x +c} \left ({\mathrm e}^{6 d x +6 c}-5 \,{\mathrm e}^{4 d x +4 c}-5 \,{\mathrm e}^{2 d x +2 c}+1\right )}{2 \left (a -b \right ) d \left (-{\mathrm e}^{8 d x +8 c} b +4 \,{\mathrm e}^{6 d x +6 c} b +16 \,{\mathrm e}^{4 d x +4 c} a -6 b \,{\mathrm e}^{4 d x +4 c}+4 \,{\mathrm e}^{2 d x +2 c} b -b \right )}+\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (-1+\left (65536 a^{5} b^{3} d^{4}-196608 a^{4} b^{4} d^{4}+196608 a^{3} b^{5} d^{4}-65536 a^{2} b^{6} d^{4}\right ) \textit {\_Z}^{4}+\left (1536 a^{2} b^{2} d^{2}+512 a \,b^{3} d^{2}\right ) \textit {\_Z}^{2}\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{2 d x +2 c}+\left (\left (\frac {8192 a^{5} b^{2} d^{3}}{a +3 b}-\frac {16384 a^{4} b^{3} d^{3}}{a +3 b}+\frac {16384 a^{2} b^{5} d^{3}}{a +3 b}-\frac {8192 a \,b^{6} d^{3}}{a +3 b}\right ) \textit {\_R}^{3}+\left (\frac {160 a^{2} b d}{a +3 b}+\frac {320 a \,b^{2} d}{a +3 b}+\frac {32 b^{3} d}{a +3 b}\right ) \textit {\_R} \right ) {\mathrm e}^{d x +c}+1\right )\right )\) \(340\)

Input:

int(sinh(d*x+c)^3/(a-b*sinh(d*x+c)^4)^2,x,method=_RETURNVERBOSE)
 

Output:

1/d*(8*(-1/16/(a-b)*tanh(1/2*d*x+1/2*c)^6-1/16*(3*a-8*b)/a/(a-b)*tanh(1/2* 
d*x+1/2*c)^4+5/16/(a-b)*tanh(1/2*d*x+1/2*c)^2-1/16/(a-b))/(tanh(1/2*d*x+1/ 
2*c)^8*a-4*tanh(1/2*d*x+1/2*c)^6*a+6*tanh(1/2*d*x+1/2*c)^4*a-16*b*tanh(1/2 
*d*x+1/2*c)^4-4*tanh(1/2*d*x+1/2*c)^2*a+a)+1/2/(a-b)*a*(1/4*(-b-(a*b)^(1/2 
))/a/b/(-a*b+(a*b)^(1/2)*a)^(1/2)*arctan(1/4*(2*tanh(1/2*d*x+1/2*c)^2*a+4* 
(a*b)^(1/2)-2*a)/(-a*b+(a*b)^(1/2)*a)^(1/2))-1/4*(-b+(a*b)^(1/2))/a/b/(-a* 
b-(a*b)^(1/2)*a)^(1/2)*arctan(1/4*(-2*tanh(1/2*d*x+1/2*c)^2*a+4*(a*b)^(1/2 
)+2*a)/(-a*b-(a*b)^(1/2)*a)^(1/2))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 5238 vs. \(2 (141) = 282\).

Time = 0.21 (sec) , antiderivative size = 5238, normalized size of antiderivative = 28.16 \[ \int \frac {\sinh ^3(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(sinh(d*x+c)^3/(a-b*sinh(d*x+c)^4)^2,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sinh ^3(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\text {Timed out} \] Input:

integrate(sinh(d*x+c)**3/(a-b*sinh(d*x+c)**4)**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\sinh ^3(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\int { \frac {\sinh \left (d x + c\right )^{3}}{{\left (b \sinh \left (d x + c\right )^{4} - a\right )}^{2}} \,d x } \] Input:

integrate(sinh(d*x+c)^3/(a-b*sinh(d*x+c)^4)^2,x, algorithm="maxima")
 

Output:

-1/2*(e^(7*d*x + 7*c) - 5*e^(5*d*x + 5*c) - 5*e^(3*d*x + 3*c) + e^(d*x + c 
))/(a*b*d - b^2*d + (a*b*d*e^(8*c) - b^2*d*e^(8*c))*e^(8*d*x) - 4*(a*b*d*e 
^(6*c) - b^2*d*e^(6*c))*e^(6*d*x) - 2*(8*a^2*d*e^(4*c) - 11*a*b*d*e^(4*c) 
+ 3*b^2*d*e^(4*c))*e^(4*d*x) - 4*(a*b*d*e^(2*c) - b^2*d*e^(2*c))*e^(2*d*x) 
) - 1/8*integrate(4*(e^(7*d*x + 7*c) - 7*e^(5*d*x + 5*c) + 7*e^(3*d*x + 3* 
c) - e^(d*x + c))/(a*b - b^2 + (a*b*e^(8*c) - b^2*e^(8*c))*e^(8*d*x) - 4*( 
a*b*e^(6*c) - b^2*e^(6*c))*e^(6*d*x) - 2*(8*a^2*e^(4*c) - 11*a*b*e^(4*c) + 
 3*b^2*e^(4*c))*e^(4*d*x) - 4*(a*b*e^(2*c) - b^2*e^(2*c))*e^(2*d*x)), x)
 

Giac [F]

\[ \int \frac {\sinh ^3(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\int { \frac {\sinh \left (d x + c\right )^{3}}{{\left (b \sinh \left (d x + c\right )^{4} - a\right )}^{2}} \,d x } \] Input:

integrate(sinh(d*x+c)^3/(a-b*sinh(d*x+c)^4)^2,x, algorithm="giac")
 

Output:

sage0*x
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sinh ^3(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\int \frac {{\mathrm {sinh}\left (c+d\,x\right )}^3}{{\left (a-b\,{\mathrm {sinh}\left (c+d\,x\right )}^4\right )}^2} \,d x \] Input:

int(sinh(c + d*x)^3/(a - b*sinh(c + d*x)^4)^2,x)
 

Output:

int(sinh(c + d*x)^3/(a - b*sinh(c + d*x)^4)^2, x)
 

Reduce [F]

\[ \int \frac {\sinh ^3(c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\text {too large to display} \] Input:

int(sinh(d*x+c)^3/(a-b*sinh(d*x+c)^4)^2,x)
 

Output:

(32*e**c*(112*e**(14*c + 8*d*x)*int(e**(7*d*x)/(e**(16*c + 16*d*x)*b**2 - 
8*e**(14*c + 14*d*x)*b**2 - 32*e**(12*c + 12*d*x)*a*b + 28*e**(12*c + 12*d 
*x)*b**2 + 128*e**(10*c + 10*d*x)*a*b - 56*e**(10*c + 10*d*x)*b**2 + 256*e 
**(8*c + 8*d*x)*a**2 - 192*e**(8*c + 8*d*x)*a*b + 70*e**(8*c + 8*d*x)*b**2 
 + 128*e**(6*c + 6*d*x)*a*b - 56*e**(6*c + 6*d*x)*b**2 - 32*e**(4*c + 4*d* 
x)*a*b + 28*e**(4*c + 4*d*x)*b**2 - 8*e**(2*c + 2*d*x)*b**2 + b**2),x)*a*b 
*d + 3*e**(14*c + 8*d*x)*int(e**(7*d*x)/(e**(16*c + 16*d*x)*b**2 - 8*e**(1 
4*c + 14*d*x)*b**2 - 32*e**(12*c + 12*d*x)*a*b + 28*e**(12*c + 12*d*x)*b** 
2 + 128*e**(10*c + 10*d*x)*a*b - 56*e**(10*c + 10*d*x)*b**2 + 256*e**(8*c 
+ 8*d*x)*a**2 - 192*e**(8*c + 8*d*x)*a*b + 70*e**(8*c + 8*d*x)*b**2 + 128* 
e**(6*c + 6*d*x)*a*b - 56*e**(6*c + 6*d*x)*b**2 - 32*e**(4*c + 4*d*x)*a*b 
+ 28*e**(4*c + 4*d*x)*b**2 - 8*e**(2*c + 2*d*x)*b**2 + b**2),x)*b**2*d - 1 
44*e**(12*c + 8*d*x)*int(e**(5*d*x)/(e**(16*c + 16*d*x)*b**2 - 8*e**(14*c 
+ 14*d*x)*b**2 - 32*e**(12*c + 12*d*x)*a*b + 28*e**(12*c + 12*d*x)*b**2 + 
128*e**(10*c + 10*d*x)*a*b - 56*e**(10*c + 10*d*x)*b**2 + 256*e**(8*c + 8* 
d*x)*a**2 - 192*e**(8*c + 8*d*x)*a*b + 70*e**(8*c + 8*d*x)*b**2 + 128*e**( 
6*c + 6*d*x)*a*b - 56*e**(6*c + 6*d*x)*b**2 - 32*e**(4*c + 4*d*x)*a*b + 28 
*e**(4*c + 4*d*x)*b**2 - 8*e**(2*c + 2*d*x)*b**2 + b**2),x)*a*b*d - 9*e**( 
12*c + 8*d*x)*int(e**(5*d*x)/(e**(16*c + 16*d*x)*b**2 - 8*e**(14*c + 14*d* 
x)*b**2 - 32*e**(12*c + 12*d*x)*a*b + 28*e**(12*c + 12*d*x)*b**2 + 128*...