\(\int \frac {\sinh (c+d x)}{(a-b \sinh ^4(c+d x))^2} \, dx\) [220]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 221 \[ \int \frac {\sinh (c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\frac {\left (3 \sqrt {a}-2 \sqrt {b}\right ) \arctan \left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{8 a^{3/2} \left (\sqrt {a}-\sqrt {b}\right )^{3/2} \sqrt [4]{b} d}+\frac {\left (3 \sqrt {a}+2 \sqrt {b}\right ) \text {arctanh}\left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{8 a^{3/2} \left (\sqrt {a}+\sqrt {b}\right )^{3/2} \sqrt [4]{b} d}+\frac {\cosh (c+d x) \left (a+b-b \cosh ^2(c+d x)\right )}{4 a (a-b) d \left (a-b+2 b \cosh ^2(c+d x)-b \cosh ^4(c+d x)\right )} \] Output:

1/8*(3*a^(1/2)-2*b^(1/2))*arctan(b^(1/4)*cosh(d*x+c)/(a^(1/2)-b^(1/2))^(1/ 
2))/a^(3/2)/(a^(1/2)-b^(1/2))^(3/2)/b^(1/4)/d+1/8*(3*a^(1/2)+2*b^(1/2))*ar 
ctanh(b^(1/4)*cosh(d*x+c)/(a^(1/2)+b^(1/2))^(1/2))/a^(3/2)/(a^(1/2)+b^(1/2 
))^(3/2)/b^(1/4)/d+1/4*cosh(d*x+c)*(a+b-b*cosh(d*x+c)^2)/a/(a-b)/d/(a-b+2* 
b*cosh(d*x+c)^2-b*cosh(d*x+c)^4)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.50 (sec) , antiderivative size = 597, normalized size of antiderivative = 2.70 \[ \int \frac {\sinh (c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\frac {\frac {32 \cosh (c+d x) (2 a+b-b \cosh (2 (c+d x)))}{8 a-3 b+4 b \cosh (2 (c+d x))-b \cosh (4 (c+d x))}+\text {RootSum}\left [b-4 b \text {$\#$1}^2-16 a \text {$\#$1}^4+6 b \text {$\#$1}^4-4 b \text {$\#$1}^6+b \text {$\#$1}^8\&,\frac {-b c-b d x-2 b \log \left (-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )+\cosh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right )+12 a c \text {$\#$1}^2-5 b c \text {$\#$1}^2+12 a d x \text {$\#$1}^2-5 b d x \text {$\#$1}^2+24 a \log \left (-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )+\cosh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right ) \text {$\#$1}^2-10 b \log \left (-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )+\cosh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right ) \text {$\#$1}^2-12 a c \text {$\#$1}^4+5 b c \text {$\#$1}^4-12 a d x \text {$\#$1}^4+5 b d x \text {$\#$1}^4-24 a \log \left (-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )+\cosh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right ) \text {$\#$1}^4+10 b \log \left (-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )+\cosh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right ) \text {$\#$1}^4+b c \text {$\#$1}^6+b d x \text {$\#$1}^6+2 b \log \left (-\cosh \left (\frac {1}{2} (c+d x)\right )-\sinh \left (\frac {1}{2} (c+d x)\right )+\cosh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}-\sinh \left (\frac {1}{2} (c+d x)\right ) \text {$\#$1}\right ) \text {$\#$1}^6}{-b \text {$\#$1}-8 a \text {$\#$1}^3+3 b \text {$\#$1}^3-3 b \text {$\#$1}^5+b \text {$\#$1}^7}\&\right ]}{32 a (a-b) d} \] Input:

Integrate[Sinh[c + d*x]/(a - b*Sinh[c + d*x]^4)^2,x]
 

Output:

((32*Cosh[c + d*x]*(2*a + b - b*Cosh[2*(c + d*x)]))/(8*a - 3*b + 4*b*Cosh[ 
2*(c + d*x)] - b*Cosh[4*(c + d*x)]) + RootSum[b - 4*b*#1^2 - 16*a*#1^4 + 6 
*b*#1^4 - 4*b*#1^6 + b*#1^8 & , (-(b*c) - b*d*x - 2*b*Log[-Cosh[(c + d*x)/ 
2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1] + 12 
*a*c*#1^2 - 5*b*c*#1^2 + 12*a*d*x*#1^2 - 5*b*d*x*#1^2 + 24*a*Log[-Cosh[(c 
+ d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*# 
1]*#1^2 - 10*b*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x) 
/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^2 - 12*a*c*#1^4 + 5*b*c*#1^4 - 12*a*d*x* 
#1^4 + 5*b*d*x*#1^4 - 24*a*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Co 
sh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^4 + 10*b*Log[-Cosh[(c + d*x) 
/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^ 
4 + b*c*#1^6 + b*d*x*#1^6 + 2*b*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] 
 + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^6)/(-(b*#1) - 8*a*#1^3 
+ 3*b*#1^3 - 3*b*#1^5 + b*#1^7) & ])/(32*a*(a - b)*d)
 

Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.05, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {3042, 26, 3694, 1405, 27, 1480, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sinh (c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {i \sin (i c+i d x)}{\left (a-b \sin (i c+i d x)^4\right )^2}dx\)

\(\Big \downarrow \) 26

\(\displaystyle -i \int \frac {\sin (i c+i d x)}{\left (a-b \sin (i c+i d x)^4\right )^2}dx\)

\(\Big \downarrow \) 3694

\(\displaystyle \frac {\int \frac {1}{\left (-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)+a-b\right )^2}d\cosh (c+d x)}{d}\)

\(\Big \downarrow \) 1405

\(\displaystyle \frac {\frac {\cosh (c+d x) \left (a-b \cosh ^2(c+d x)+b\right )}{4 a (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}-\frac {\int -\frac {2 b \left (-b \cosh ^2(c+d x)+3 a-b\right )}{-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)+a-b}d\cosh (c+d x)}{8 a b (a-b)}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\int \frac {-b \cosh ^2(c+d x)+3 a-b}{-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)+a-b}d\cosh (c+d x)}{4 a (a-b)}+\frac {\cosh (c+d x) \left (a-b \cosh ^2(c+d x)+b\right )}{4 a (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}}{d}\)

\(\Big \downarrow \) 1480

\(\displaystyle \frac {\frac {\frac {1}{2} \sqrt {b} \left (\frac {3 a-2 b}{\sqrt {a}}-\sqrt {b}\right ) \int \frac {1}{\left (\sqrt {a}+\sqrt {b}\right ) \sqrt {b}-b \cosh ^2(c+d x)}d\cosh (c+d x)-\frac {1}{2} \sqrt {b} \left (\frac {3 a-2 b}{\sqrt {a}}+\sqrt {b}\right ) \int \frac {1}{-b \cosh ^2(c+d x)-\left (\sqrt {a}-\sqrt {b}\right ) \sqrt {b}}d\cosh (c+d x)}{4 a (a-b)}+\frac {\cosh (c+d x) \left (a-b \cosh ^2(c+d x)+b\right )}{4 a (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}}{d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\frac {1}{2} \sqrt {b} \left (\frac {3 a-2 b}{\sqrt {a}}-\sqrt {b}\right ) \int \frac {1}{\left (\sqrt {a}+\sqrt {b}\right ) \sqrt {b}-b \cosh ^2(c+d x)}d\cosh (c+d x)+\frac {\left (\frac {3 a-2 b}{\sqrt {a}}+\sqrt {b}\right ) \arctan \left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 \sqrt [4]{b} \sqrt {\sqrt {a}-\sqrt {b}}}}{4 a (a-b)}+\frac {\cosh (c+d x) \left (a-b \cosh ^2(c+d x)+b\right )}{4 a (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}}{d}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {\frac {\frac {\left (\frac {3 a-2 b}{\sqrt {a}}+\sqrt {b}\right ) \arctan \left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}-\sqrt {b}}}\right )}{2 \sqrt [4]{b} \sqrt {\sqrt {a}-\sqrt {b}}}+\frac {\left (\frac {3 a-2 b}{\sqrt {a}}-\sqrt {b}\right ) \text {arctanh}\left (\frac {\sqrt [4]{b} \cosh (c+d x)}{\sqrt {\sqrt {a}+\sqrt {b}}}\right )}{2 \sqrt [4]{b} \sqrt {\sqrt {a}+\sqrt {b}}}}{4 a (a-b)}+\frac {\cosh (c+d x) \left (a-b \cosh ^2(c+d x)+b\right )}{4 a (a-b) \left (a-b \cosh ^4(c+d x)+2 b \cosh ^2(c+d x)-b\right )}}{d}\)

Input:

Int[Sinh[c + d*x]/(a - b*Sinh[c + d*x]^4)^2,x]
 

Output:

(((((3*a - 2*b)/Sqrt[a] + Sqrt[b])*ArcTan[(b^(1/4)*Cosh[c + d*x])/Sqrt[Sqr 
t[a] - Sqrt[b]]])/(2*Sqrt[Sqrt[a] - Sqrt[b]]*b^(1/4)) + (((3*a - 2*b)/Sqrt 
[a] - Sqrt[b])*ArcTanh[(b^(1/4)*Cosh[c + d*x])/Sqrt[Sqrt[a] + Sqrt[b]]])/( 
2*Sqrt[Sqrt[a] + Sqrt[b]]*b^(1/4)))/(4*a*(a - b)) + (Cosh[c + d*x]*(a + b 
- b*Cosh[c + d*x]^2))/(4*a*(a - b)*(a - b + 2*b*Cosh[c + d*x]^2 - b*Cosh[c 
 + d*x]^4)))/d
 

Defintions of rubi rules used

rule 26
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a])   I 
nt[Fx, x], x] /; FreeQ[a, x] && EqQ[a^2, 1]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 1405
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x)*(b^2 
- 2*a*c + b*c*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c)) 
), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c))   Int[(b^2 - 2*a*c + 2*(p + 1)*( 
b^2 - 4*a*c) + b*c*(4*p + 7)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; Fr 
eeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3694
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^ 
(p_.), x_Symbol] :> With[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[-ff/f 
Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - 2*b*ff^2*x^2 + b*ff^4*x^4)^p, 
 x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 
 1)/2]
 
Maple [A] (verified)

Time = 6.63 (sec) , antiderivative size = 339, normalized size of antiderivative = 1.53

method result size
derivativedivides \(\frac {\frac {-\frac {\left (a -2 b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{2 a \left (a -b \right )}+\frac {\left (3 a -8 b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{2 a \left (a -b \right )}-\frac {\left (3 a +2 b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{2 a \left (a -b \right )}+\frac {2}{4 a -4 b}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} a -4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} a +6 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a -16 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +a}+\frac {-\frac {\left (-\sqrt {a b}+3 a -2 b \right ) \arctan \left (\frac {-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \sqrt {a b}+2 a}{4 \sqrt {-a b -\sqrt {a b}\, a}}\right )}{4 a \sqrt {-a b -\sqrt {a b}\, a}}+\frac {\left (\sqrt {a b}+3 a -2 b \right ) \arctan \left (\frac {2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \sqrt {a b}-2 a}{4 \sqrt {-a b +\sqrt {a b}\, a}}\right )}{4 a \sqrt {-a b +\sqrt {a b}\, a}}}{2 a -2 b}}{d}\) \(339\)
default \(\frac {\frac {-\frac {\left (a -2 b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{6}}{2 a \left (a -b \right )}+\frac {\left (3 a -8 b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}}{2 a \left (a -b \right )}-\frac {\left (3 a +2 b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}}{2 a \left (a -b \right )}+\frac {2}{4 a -4 b}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{8} a -4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{6} a +6 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a -16 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4}-4 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +a}+\frac {-\frac {\left (-\sqrt {a b}+3 a -2 b \right ) \arctan \left (\frac {-2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \sqrt {a b}+2 a}{4 \sqrt {-a b -\sqrt {a b}\, a}}\right )}{4 a \sqrt {-a b -\sqrt {a b}\, a}}+\frac {\left (\sqrt {a b}+3 a -2 b \right ) \arctan \left (\frac {2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 \sqrt {a b}-2 a}{4 \sqrt {-a b +\sqrt {a b}\, a}}\right )}{4 a \sqrt {-a b +\sqrt {a b}\, a}}}{2 a -2 b}}{d}\) \(339\)
risch \(\frac {{\mathrm e}^{d x +c} \left (-{\mathrm e}^{6 d x +6 c} b +4 \,{\mathrm e}^{4 d x +4 c} a +b \,{\mathrm e}^{4 d x +4 c}+4 \,{\mathrm e}^{2 d x +2 c} a +{\mathrm e}^{2 d x +2 c} b -b \right )}{2 a d \left (a -b \right ) \left (-{\mathrm e}^{8 d x +8 c} b +4 \,{\mathrm e}^{6 d x +6 c} b +16 \,{\mathrm e}^{4 d x +4 c} a -6 b \,{\mathrm e}^{4 d x +4 c}+4 \,{\mathrm e}^{2 d x +2 c} b -b \right )}+\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (\left (65536 a^{9} b \,d^{4}-196608 a^{8} b^{2} d^{4}+196608 a^{7} b^{3} d^{4}-65536 a^{6} b^{4} d^{4}\right ) \textit {\_Z}^{4}+\left (7680 a^{5} b \,d^{2}-7680 a^{4} b^{2} d^{2}+2048 a^{3} b^{3} d^{2}\right ) \textit {\_Z}^{2}-81 a^{2}+72 a b -16 b^{2}\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{2 d x +2 c}+\left (\left (\frac {32768 a^{7} d^{3} b}{81 a^{2}-81 a b +20 b^{2}}-\frac {114688 a^{6} d^{3} b^{2}}{81 a^{2}-81 a b +20 b^{2}}+\frac {147456 a^{5} d^{3} b^{3}}{81 a^{2}-81 a b +20 b^{2}}-\frac {81920 a^{4} b^{4} d^{3}}{81 a^{2}-81 a b +20 b^{2}}+\frac {16384 a^{3} b^{5} d^{3}}{81 a^{2}-81 a b +20 b^{2}}\right ) \textit {\_R}^{3}+\left (\frac {864 a^{4} d}{81 a^{2}-81 a b +20 b^{2}}+\frac {1152 a^{3} d b}{81 a^{2}-81 a b +20 b^{2}}-\frac {2720 a^{2} d \,b^{2}}{81 a^{2}-81 a b +20 b^{2}}+\frac {1472 a \,b^{3} d}{81 a^{2}-81 a b +20 b^{2}}-\frac {256 b^{4} d}{81 a^{2}-81 a b +20 b^{2}}\right ) \textit {\_R} \right ) {\mathrm e}^{d x +c}+1\right )\right )\) \(541\)

Input:

int(sinh(d*x+c)/(a-b*sinh(d*x+c)^4)^2,x,method=_RETURNVERBOSE)
 

Output:

1/d*(2*(-1/4*(a-2*b)/a/(a-b)*tanh(1/2*d*x+1/2*c)^6+1/4*(3*a-8*b)/a/(a-b)*t 
anh(1/2*d*x+1/2*c)^4-1/4*(3*a+2*b)/a/(a-b)*tanh(1/2*d*x+1/2*c)^2+1/4/(a-b) 
)/(tanh(1/2*d*x+1/2*c)^8*a-4*tanh(1/2*d*x+1/2*c)^6*a+6*tanh(1/2*d*x+1/2*c) 
^4*a-16*b*tanh(1/2*d*x+1/2*c)^4-4*tanh(1/2*d*x+1/2*c)^2*a+a)+1/2/(a-b)*(-1 
/4*(-(a*b)^(1/2)+3*a-2*b)/a/(-a*b-(a*b)^(1/2)*a)^(1/2)*arctan(1/4*(-2*tanh 
(1/2*d*x+1/2*c)^2*a+4*(a*b)^(1/2)+2*a)/(-a*b-(a*b)^(1/2)*a)^(1/2))+1/4*((a 
*b)^(1/2)+3*a-2*b)/a/(-a*b+(a*b)^(1/2)*a)^(1/2)*arctan(1/4*(2*tanh(1/2*d*x 
+1/2*c)^2*a+4*(a*b)^(1/2)-2*a)/(-a*b+(a*b)^(1/2)*a)^(1/2))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 6018 vs. \(2 (173) = 346\).

Time = 0.27 (sec) , antiderivative size = 6018, normalized size of antiderivative = 27.23 \[ \int \frac {\sinh (c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(sinh(d*x+c)/(a-b*sinh(d*x+c)^4)^2,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\sinh (c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\text {Timed out} \] Input:

integrate(sinh(d*x+c)/(a-b*sinh(d*x+c)**4)**2,x)
 

Output:

Timed out
 

Maxima [F]

\[ \int \frac {\sinh (c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\int { \frac {\sinh \left (d x + c\right )}{{\left (b \sinh \left (d x + c\right )^{4} - a\right )}^{2}} \,d x } \] Input:

integrate(sinh(d*x+c)/(a-b*sinh(d*x+c)^4)^2,x, algorithm="maxima")
 

Output:

-1/2*((4*a*e^(5*c) + b*e^(5*c))*e^(5*d*x) + (4*a*e^(3*c) + b*e^(3*c))*e^(3 
*d*x) - b*e^(7*d*x + 7*c) - b*e^(d*x + c))/(a^2*b*d - a*b^2*d + (a^2*b*d*e 
^(8*c) - a*b^2*d*e^(8*c))*e^(8*d*x) - 4*(a^2*b*d*e^(6*c) - a*b^2*d*e^(6*c) 
)*e^(6*d*x) - 2*(8*a^3*d*e^(4*c) - 11*a^2*b*d*e^(4*c) + 3*a*b^2*d*e^(4*c)) 
*e^(4*d*x) - 4*(a^2*b*d*e^(2*c) - a*b^2*d*e^(2*c))*e^(2*d*x)) + 1/2*integr 
ate(-((12*a*e^(5*c) - 5*b*e^(5*c))*e^(5*d*x) - (12*a*e^(3*c) - 5*b*e^(3*c) 
)*e^(3*d*x) - b*e^(7*d*x + 7*c) + b*e^(d*x + c))/(a^2*b - a*b^2 + (a^2*b*e 
^(8*c) - a*b^2*e^(8*c))*e^(8*d*x) - 4*(a^2*b*e^(6*c) - a*b^2*e^(6*c))*e^(6 
*d*x) - 2*(8*a^3*e^(4*c) - 11*a^2*b*e^(4*c) + 3*a*b^2*e^(4*c))*e^(4*d*x) - 
 4*(a^2*b*e^(2*c) - a*b^2*e^(2*c))*e^(2*d*x)), x)
 

Giac [F]

\[ \int \frac {\sinh (c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\int { \frac {\sinh \left (d x + c\right )}{{\left (b \sinh \left (d x + c\right )^{4} - a\right )}^{2}} \,d x } \] Input:

integrate(sinh(d*x+c)/(a-b*sinh(d*x+c)^4)^2,x, algorithm="giac")
 

Output:

sage0*x
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sinh (c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\int \frac {\mathrm {sinh}\left (c+d\,x\right )}{{\left (a-b\,{\mathrm {sinh}\left (c+d\,x\right )}^4\right )}^2} \,d x \] Input:

int(sinh(c + d*x)/(a - b*sinh(c + d*x)^4)^2,x)
 

Output:

int(sinh(c + d*x)/(a - b*sinh(c + d*x)^4)^2, x)
 

Reduce [F]

\[ \int \frac {\sinh (c+d x)}{\left (a-b \sinh ^4(c+d x)\right )^2} \, dx=\text {too large to display} \] Input:

int(sinh(d*x+c)/(a-b*sinh(d*x+c)^4)^2,x)
 

Output:

(128*e**c*(13*e**(14*c + 8*d*x)*int(e**(7*d*x)/(e**(16*c + 16*d*x)*b**2 - 
8*e**(14*c + 14*d*x)*b**2 - 32*e**(12*c + 12*d*x)*a*b + 28*e**(12*c + 12*d 
*x)*b**2 + 128*e**(10*c + 10*d*x)*a*b - 56*e**(10*c + 10*d*x)*b**2 + 256*e 
**(8*c + 8*d*x)*a**2 - 192*e**(8*c + 8*d*x)*a*b + 70*e**(8*c + 8*d*x)*b**2 
 + 128*e**(6*c + 6*d*x)*a*b - 56*e**(6*c + 6*d*x)*b**2 - 32*e**(4*c + 4*d* 
x)*a*b + 28*e**(4*c + 4*d*x)*b**2 - 8*e**(2*c + 2*d*x)*b**2 + b**2),x)*b** 
2*d + 48*e**(12*c + 8*d*x)*int(e**(5*d*x)/(e**(16*c + 16*d*x)*b**2 - 8*e** 
(14*c + 14*d*x)*b**2 - 32*e**(12*c + 12*d*x)*a*b + 28*e**(12*c + 12*d*x)*b 
**2 + 128*e**(10*c + 10*d*x)*a*b - 56*e**(10*c + 10*d*x)*b**2 + 256*e**(8* 
c + 8*d*x)*a**2 - 192*e**(8*c + 8*d*x)*a*b + 70*e**(8*c + 8*d*x)*b**2 + 12 
8*e**(6*c + 6*d*x)*a*b - 56*e**(6*c + 6*d*x)*b**2 - 32*e**(4*c + 4*d*x)*a* 
b + 28*e**(4*c + 4*d*x)*b**2 - 8*e**(2*c + 2*d*x)*b**2 + b**2),x)*a*b*d - 
18*e**(12*c + 8*d*x)*int(e**(5*d*x)/(e**(16*c + 16*d*x)*b**2 - 8*e**(14*c 
+ 14*d*x)*b**2 - 32*e**(12*c + 12*d*x)*a*b + 28*e**(12*c + 12*d*x)*b**2 + 
128*e**(10*c + 10*d*x)*a*b - 56*e**(10*c + 10*d*x)*b**2 + 256*e**(8*c + 8* 
d*x)*a**2 - 192*e**(8*c + 8*d*x)*a*b + 70*e**(8*c + 8*d*x)*b**2 + 128*e**( 
6*c + 6*d*x)*a*b - 56*e**(6*c + 6*d*x)*b**2 - 32*e**(4*c + 4*d*x)*a*b + 28 
*e**(4*c + 4*d*x)*b**2 - 8*e**(2*c + 2*d*x)*b**2 + b**2),x)*b**2*d + 4*e** 
(10*c + 8*d*x)*int(e**(3*d*x)/(e**(16*c + 16*d*x)*b**2 - 8*e**(14*c + 14*d 
*x)*b**2 - 32*e**(12*c + 12*d*x)*a*b + 28*e**(12*c + 12*d*x)*b**2 + 128...