\(\int \frac {\cosh ^3(c+d x)}{(a+b \tanh ^2(c+d x))^2} \, dx\) [115]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-2)]
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 128 \[ \int \frac {\cosh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\frac {b^2 (6 a+b) \arctan \left (\frac {\sqrt {a+b} \sinh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} (a+b)^{7/2} d}+\frac {(a+3 b) \sinh (c+d x)}{(a+b)^3 d}+\frac {\sinh ^3(c+d x)}{3 (a+b)^2 d}+\frac {b^3 \sinh (c+d x)}{2 a (a+b)^3 d \left (a+(a+b) \sinh ^2(c+d x)\right )} \] Output:

1/2*b^2*(6*a+b)*arctan((a+b)^(1/2)*sinh(d*x+c)/a^(1/2))/a^(3/2)/(a+b)^(7/2 
)/d+(a+3*b)*sinh(d*x+c)/(a+b)^3/d+1/3*sinh(d*x+c)^3/(a+b)^2/d+1/2*b^3*sinh 
(d*x+c)/a/(a+b)^3/d/(a+(a+b)*sinh(d*x+c)^2)
 

Mathematica [A] (verified)

Time = 0.75 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.87 \[ \int \frac {\cosh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\frac {-\frac {6 b^2 (6 a+b) \arctan \left (\frac {\sqrt {a} \text {csch}(c+d x)}{\sqrt {a+b}}\right )}{a^{3/2} (a+b)^{7/2}}+\frac {3 \left (3 a+11 b+\frac {4 b^3}{a (a-b+(a+b) \cosh (2 (c+d x)))}\right ) \sinh (c+d x)}{(a+b)^3}+\frac {\sinh (3 (c+d x))}{(a+b)^2}}{12 d} \] Input:

Integrate[Cosh[c + d*x]^3/(a + b*Tanh[c + d*x]^2)^2,x]
 

Output:

((-6*b^2*(6*a + b)*ArcTan[(Sqrt[a]*Csch[c + d*x])/Sqrt[a + b]])/(a^(3/2)*( 
a + b)^(7/2)) + (3*(3*a + 11*b + (4*b^3)/(a*(a - b + (a + b)*Cosh[2*(c + d 
*x)])))*Sinh[c + d*x])/(a + b)^3 + Sinh[3*(c + d*x)]/(a + b)^2)/(12*d)
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.94, number of steps used = 5, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.174, Rules used = {3042, 4159, 300, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cosh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sec (i c+i d x)^3 \left (a-b \tan (i c+i d x)^2\right )^2}dx\)

\(\Big \downarrow \) 4159

\(\displaystyle \frac {\int \frac {\left (\sinh ^2(c+d x)+1\right )^3}{\left ((a+b) \sinh ^2(c+d x)+a\right )^2}d\sinh (c+d x)}{d}\)

\(\Big \downarrow \) 300

\(\displaystyle \frac {\int \left (\frac {\sinh ^2(c+d x)}{(a+b)^2}+\frac {a+3 b}{(a+b)^3}+\frac {3 (a+b) \sinh ^2(c+d x) b^2+(3 a+b) b^2}{(a+b)^3 \left ((a+b) \sinh ^2(c+d x)+a\right )^2}\right )d\sinh (c+d x)}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\frac {b^2 (6 a+b) \arctan \left (\frac {\sqrt {a+b} \sinh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} (a+b)^{7/2}}+\frac {b^3 \sinh (c+d x)}{2 a (a+b)^3 \left ((a+b) \sinh ^2(c+d x)+a\right )}+\frac {\sinh ^3(c+d x)}{3 (a+b)^2}+\frac {(a+3 b) \sinh (c+d x)}{(a+b)^3}}{d}\)

Input:

Int[Cosh[c + d*x]^3/(a + b*Tanh[c + d*x]^2)^2,x]
 

Output:

((b^2*(6*a + b)*ArcTan[(Sqrt[a + b]*Sinh[c + d*x])/Sqrt[a]])/(2*a^(3/2)*(a 
 + b)^(7/2)) + ((a + 3*b)*Sinh[c + d*x])/(a + b)^3 + Sinh[c + d*x]^3/(3*(a 
 + b)^2) + (b^3*Sinh[c + d*x])/(2*a*(a + b)^3*(a + (a + b)*Sinh[c + d*x]^2 
)))/d
 

Defintions of rubi rules used

rule 300
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Int 
[PolynomialDivide[(a + b*x^2)^p, (c + d*x^2)^(-q), x], x] /; FreeQ[{a, b, c 
, d}, x] && NeQ[b*c - a*d, 0] && IGtQ[p, 0] && ILtQ[q, 0] && GeQ[p, -q]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4159
Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_ 
))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff/f 
  Subst[Int[ExpandToSum[b*(ff*x)^n + a*(1 - ff^2*x^2)^(n/2), x]^p/(1 - ff^2 
*x^2)^((m + n*p + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f} 
, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] && IntegerQ[p]
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(377\) vs. \(2(114)=228\).

Time = 27.80 (sec) , antiderivative size = 378, normalized size of antiderivative = 2.95

method result size
derivativedivides \(\frac {\frac {2 b^{2} \left (\frac {-\frac {b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{2 a}+\frac {b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a}+\frac {\left (6 a +b \right ) \left (\frac {\left (\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}-\frac {\left (\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2}\right )}{\left (a +b \right )^{3}}-\frac {1}{3 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}+\frac {1}{2 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {a +3 b}{\left (a +b \right )^{3} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {1}{3 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {1}{2 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {a +3 b}{\left (a +b \right )^{3} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}}{d}\) \(378\)
default \(\frac {\frac {2 b^{2} \left (\frac {-\frac {b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{2 a}+\frac {b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a}+\frac {\left (6 a +b \right ) \left (\frac {\left (\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}-\frac {\left (\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2}\right )}{\left (a +b \right )^{3}}-\frac {1}{3 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{3}}+\frac {1}{2 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}-\frac {a +3 b}{\left (a +b \right )^{3} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}-\frac {1}{3 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3}}-\frac {1}{2 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {a +3 b}{\left (a +b \right )^{3} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}}{d}\) \(378\)
risch \(\frac {{\mathrm e}^{3 d x +3 c}}{24 \left (a^{2}+2 a b +b^{2}\right ) d}+\frac {3 \,{\mathrm e}^{d x +c} a}{8 \left (a^{2}+2 a b +b^{2}\right ) \left (a +b \right ) d}+\frac {11 \,{\mathrm e}^{d x +c} b}{8 \left (a^{2}+2 a b +b^{2}\right ) \left (a +b \right ) d}-\frac {3 \,{\mathrm e}^{-d x -c} a}{8 \left (a^{3}+3 a^{2} b +3 b^{2} a +b^{3}\right ) d}-\frac {11 \,{\mathrm e}^{-d x -c} b}{8 \left (a^{3}+3 a^{2} b +3 b^{2} a +b^{3}\right ) d}-\frac {{\mathrm e}^{-3 d x -3 c}}{24 \left (a^{2}+2 a b +b^{2}\right ) d}+\frac {\left ({\mathrm e}^{2 d x +2 c}-1\right ) b^{3} {\mathrm e}^{d x +c}}{\left ({\mathrm e}^{4 d x +4 c} a +b \,{\mathrm e}^{4 d x +4 c}+2 \,{\mathrm e}^{2 d x +2 c} a -2 \,{\mathrm e}^{2 d x +2 c} b +a +b \right ) d \left (a +b \right ) a \left (a^{2}+2 a b +b^{2}\right )}-\frac {3 b^{2} \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 a \,{\mathrm e}^{d x +c}}{\sqrt {-a^{2}-a b}}-1\right )}{2 \sqrt {-a^{2}-a b}\, \left (a +b \right )^{3} d}-\frac {b^{3} \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 a \,{\mathrm e}^{d x +c}}{\sqrt {-a^{2}-a b}}-1\right )}{4 \sqrt {-a^{2}-a b}\, \left (a +b \right )^{3} d a}+\frac {3 b^{2} \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 a \,{\mathrm e}^{d x +c}}{\sqrt {-a^{2}-a b}}-1\right )}{2 \sqrt {-a^{2}-a b}\, \left (a +b \right )^{3} d}+\frac {b^{3} \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 a \,{\mathrm e}^{d x +c}}{\sqrt {-a^{2}-a b}}-1\right )}{4 \sqrt {-a^{2}-a b}\, \left (a +b \right )^{3} d a}\) \(522\)

Input:

int(cosh(d*x+c)^3/(a+tanh(d*x+c)^2*b)^2,x,method=_RETURNVERBOSE)
 

Output:

1/d*(2/(a+b)^3*b^2*((-1/2*b/a*tanh(1/2*d*x+1/2*c)^3+1/2*b/a*tanh(1/2*d*x+1 
/2*c))/(tanh(1/2*d*x+1/2*c)^4*a+2*tanh(1/2*d*x+1/2*c)^2*a+4*b*tanh(1/2*d*x 
+1/2*c)^2+a)+1/2*(6*a+b)*(1/2*(((a+b)*b)^(1/2)+b)/a/((a+b)*b)^(1/2)/((2*(( 
a+b)*b)^(1/2)+a+2*b)*a)^(1/2)*arctan(a*tanh(1/2*d*x+1/2*c)/((2*((a+b)*b)^( 
1/2)+a+2*b)*a)^(1/2))-1/2*(((a+b)*b)^(1/2)-b)/a/((a+b)*b)^(1/2)/((2*((a+b) 
*b)^(1/2)-a-2*b)*a)^(1/2)*arctanh(a*tanh(1/2*d*x+1/2*c)/((2*((a+b)*b)^(1/2 
)-a-2*b)*a)^(1/2))))-1/3/(a+b)^2/(tanh(1/2*d*x+1/2*c)+1)^3+1/2/(a+b)^2/(ta 
nh(1/2*d*x+1/2*c)+1)^2-(a+3*b)/(a+b)^3/(tanh(1/2*d*x+1/2*c)+1)-1/3/(a+b)^2 
/(tanh(1/2*d*x+1/2*c)-1)^3-1/2/(a+b)^2/(tanh(1/2*d*x+1/2*c)-1)^2-(a+3*b)/( 
a+b)^3/(tanh(1/2*d*x+1/2*c)-1))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 3649 vs. \(2 (114) = 228\).

Time = 0.19 (sec) , antiderivative size = 6941, normalized size of antiderivative = 54.23 \[ \int \frac {\cosh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(cosh(d*x+c)^3/(a+b*tanh(d*x+c)^2)^2,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F]

\[ \int \frac {\cosh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\int \frac {\cosh ^{3}{\left (c + d x \right )}}{\left (a + b \tanh ^{2}{\left (c + d x \right )}\right )^{2}}\, dx \] Input:

integrate(cosh(d*x+c)**3/(a+b*tanh(d*x+c)**2)**2,x)
 

Output:

Integral(cosh(c + d*x)**3/(a + b*tanh(c + d*x)**2)**2, x)
 

Maxima [F]

\[ \int \frac {\cosh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\int { \frac {\cosh \left (d x + c\right )^{3}}{{\left (b \tanh \left (d x + c\right )^{2} + a\right )}^{2}} \,d x } \] Input:

integrate(cosh(d*x+c)^3/(a+b*tanh(d*x+c)^2)^2,x, algorithm="maxima")
 

Output:

-1/24*(a^3 + 2*a^2*b + a*b^2 - (a^3*e^(10*c) + 2*a^2*b*e^(10*c) + a*b^2*e^ 
(10*c))*e^(10*d*x) - (11*a^3*e^(8*c) + 42*a^2*b*e^(8*c) + 31*a*b^2*e^(8*c) 
)*e^(8*d*x) - 2*(5*a^3*e^(6*c) + 4*a^2*b*e^(6*c) - 49*a*b^2*e^(6*c) + 12*b 
^3*e^(6*c))*e^(6*d*x) + 2*(5*a^3*e^(4*c) + 4*a^2*b*e^(4*c) - 49*a*b^2*e^(4 
*c) + 12*b^3*e^(4*c))*e^(4*d*x) + (11*a^3*e^(2*c) + 42*a^2*b*e^(2*c) + 31* 
a*b^2*e^(2*c))*e^(2*d*x))/((a^5*d*e^(7*c) + 4*a^4*b*d*e^(7*c) + 6*a^3*b^2* 
d*e^(7*c) + 4*a^2*b^3*d*e^(7*c) + a*b^4*d*e^(7*c))*e^(7*d*x) + 2*(a^5*d*e^ 
(5*c) + 2*a^4*b*d*e^(5*c) - 2*a^2*b^3*d*e^(5*c) - a*b^4*d*e^(5*c))*e^(5*d* 
x) + (a^5*d*e^(3*c) + 4*a^4*b*d*e^(3*c) + 6*a^3*b^2*d*e^(3*c) + 4*a^2*b^3* 
d*e^(3*c) + a*b^4*d*e^(3*c))*e^(3*d*x)) + 1/8*integrate(8*((6*a*b^2*e^(3*c 
) + b^3*e^(3*c))*e^(3*d*x) + (6*a*b^2*e^c + b^3*e^c)*e^(d*x))/(a^5 + 4*a^4 
*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4 + (a^5*e^(4*c) + 4*a^4*b*e^(4*c) + 6*a^ 
3*b^2*e^(4*c) + 4*a^2*b^3*e^(4*c) + a*b^4*e^(4*c))*e^(4*d*x) + 2*(a^5*e^(2 
*c) + 2*a^4*b*e^(2*c) - 2*a^2*b^3*e^(2*c) - a*b^4*e^(2*c))*e^(2*d*x)), x)
 

Giac [F(-2)]

Exception generated. \[ \int \frac {\cosh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\text {Exception raised: TypeError} \] Input:

integrate(cosh(d*x+c)^3/(a+b*tanh(d*x+c)^2)^2,x, algorithm="giac")
 

Output:

Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Limit: Max order reached or unable 
to make series expansion Error: Bad Argument Value
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cosh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\int \frac {{\mathrm {cosh}\left (c+d\,x\right )}^3}{{\left (b\,{\mathrm {tanh}\left (c+d\,x\right )}^2+a\right )}^2} \,d x \] Input:

int(cosh(c + d*x)^3/(a + b*tanh(c + d*x)^2)^2,x)
 

Output:

int(cosh(c + d*x)^3/(a + b*tanh(c + d*x)^2)^2, x)
 

Reduce [B] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 1442, normalized size of antiderivative = 11.27 \[ \int \frac {\cosh ^3(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx =\text {Too large to display} \] Input:

int(cosh(d*x+c)^3/(a+b*tanh(d*x+c)^2)^2,x)
 

Output:

(72*e**(7*c + 7*d*x)*sqrt(a)*sqrt(a + b)*atan((e**(c + d*x)*sqrt(a + b) - 
sqrt(b))/sqrt(a))*a**2*b**2 + 84*e**(7*c + 7*d*x)*sqrt(a)*sqrt(a + b)*atan 
((e**(c + d*x)*sqrt(a + b) - sqrt(b))/sqrt(a))*a*b**3 + 12*e**(7*c + 7*d*x 
)*sqrt(a)*sqrt(a + b)*atan((e**(c + d*x)*sqrt(a + b) - sqrt(b))/sqrt(a))*b 
**4 + 144*e**(5*c + 5*d*x)*sqrt(a)*sqrt(a + b)*atan((e**(c + d*x)*sqrt(a + 
 b) - sqrt(b))/sqrt(a))*a**2*b**2 - 120*e**(5*c + 5*d*x)*sqrt(a)*sqrt(a + 
b)*atan((e**(c + d*x)*sqrt(a + b) - sqrt(b))/sqrt(a))*a*b**3 - 24*e**(5*c 
+ 5*d*x)*sqrt(a)*sqrt(a + b)*atan((e**(c + d*x)*sqrt(a + b) - sqrt(b))/sqr 
t(a))*b**4 + 72*e**(3*c + 3*d*x)*sqrt(a)*sqrt(a + b)*atan((e**(c + d*x)*sq 
rt(a + b) - sqrt(b))/sqrt(a))*a**2*b**2 + 84*e**(3*c + 3*d*x)*sqrt(a)*sqrt 
(a + b)*atan((e**(c + d*x)*sqrt(a + b) - sqrt(b))/sqrt(a))*a*b**3 + 12*e** 
(3*c + 3*d*x)*sqrt(a)*sqrt(a + b)*atan((e**(c + d*x)*sqrt(a + b) - sqrt(b) 
)/sqrt(a))*b**4 + 72*e**(7*c + 7*d*x)*sqrt(a)*sqrt(a + b)*atan((e**(c + d* 
x)*sqrt(a + b) + sqrt(b))/sqrt(a))*a**2*b**2 + 84*e**(7*c + 7*d*x)*sqrt(a) 
*sqrt(a + b)*atan((e**(c + d*x)*sqrt(a + b) + sqrt(b))/sqrt(a))*a*b**3 + 1 
2*e**(7*c + 7*d*x)*sqrt(a)*sqrt(a + b)*atan((e**(c + d*x)*sqrt(a + b) + sq 
rt(b))/sqrt(a))*b**4 + 144*e**(5*c + 5*d*x)*sqrt(a)*sqrt(a + b)*atan((e**( 
c + d*x)*sqrt(a + b) + sqrt(b))/sqrt(a))*a**2*b**2 - 120*e**(5*c + 5*d*x)* 
sqrt(a)*sqrt(a + b)*atan((e**(c + d*x)*sqrt(a + b) + sqrt(b))/sqrt(a))*a*b 
**3 - 24*e**(5*c + 5*d*x)*sqrt(a)*sqrt(a + b)*atan((e**(c + d*x)*sqrt(a...