\(\int \frac {\cosh ^2(c+d x)}{(a+b \tanh ^2(c+d x))^2} \, dx\) [116]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [B] (verification not implemented)
Sympy [F(-1)]
Maxima [B] (verification not implemented)
Giac [B] (verification not implemented)
Mupad [F(-1)]
Reduce [B] (verification not implemented)

Optimal result

Integrand size = 23, antiderivative size = 140 \[ \int \frac {\cosh ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\frac {(a+5 b) x}{2 (a+b)^3}+\frac {b^{3/2} (5 a+b) \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{2 a^{3/2} (a+b)^3 d}+\frac {\cosh (c+d x) \sinh (c+d x)}{2 (a+b) d \left (a+b \tanh ^2(c+d x)\right )}-\frac {(a-b) b \tanh (c+d x)}{2 a (a+b)^2 d \left (a+b \tanh ^2(c+d x)\right )} \] Output:

1/2*(a+5*b)*x/(a+b)^3+1/2*b^(3/2)*(5*a+b)*arctan(b^(1/2)*tanh(d*x+c)/a^(1/ 
2))/a^(3/2)/(a+b)^3/d+1/2*cosh(d*x+c)*sinh(d*x+c)/(a+b)/d/(a+b*tanh(d*x+c) 
^2)-1/2*(a-b)*b*tanh(d*x+c)/a/(a+b)^2/d/(a+b*tanh(d*x+c)^2)
 

Mathematica [A] (verified)

Time = 0.90 (sec) , antiderivative size = 110, normalized size of antiderivative = 0.79 \[ \int \frac {\cosh ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\frac {2 (a+5 b) (c+d x)+\frac {2 b^{3/2} (5 a+b) \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{a^{3/2}}+(a+b) \sinh (2 (c+d x))+\frac {2 b^2 (a+b) \sinh (2 (c+d x))}{a (a-b+(a+b) \cosh (2 (c+d x)))}}{4 (a+b)^3 d} \] Input:

Integrate[Cosh[c + d*x]^2/(a + b*Tanh[c + d*x]^2)^2,x]
 

Output:

(2*(a + 5*b)*(c + d*x) + (2*b^(3/2)*(5*a + b)*ArcTan[(Sqrt[b]*Tanh[c + d*x 
])/Sqrt[a]])/a^(3/2) + (a + b)*Sinh[2*(c + d*x)] + (2*b^2*(a + b)*Sinh[2*( 
c + d*x)])/(a*(a - b + (a + b)*Cosh[2*(c + d*x)])))/(4*(a + b)^3*d)
 

Rubi [A] (verified)

Time = 0.38 (sec) , antiderivative size = 162, normalized size of antiderivative = 1.16, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3042, 4158, 316, 402, 27, 397, 218, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cosh ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sec (i c+i d x)^2 \left (a-b \tan (i c+i d x)^2\right )^2}dx\)

\(\Big \downarrow \) 4158

\(\displaystyle \frac {\int \frac {1}{\left (1-\tanh ^2(c+d x)\right )^2 \left (b \tanh ^2(c+d x)+a\right )^2}d\tanh (c+d x)}{d}\)

\(\Big \downarrow \) 316

\(\displaystyle \frac {\frac {\int \frac {3 b \tanh ^2(c+d x)+a+2 b}{\left (1-\tanh ^2(c+d x)\right ) \left (b \tanh ^2(c+d x)+a\right )^2}d\tanh (c+d x)}{2 (a+b)}+\frac {\tanh (c+d x)}{2 (a+b) \left (1-\tanh ^2(c+d x)\right ) \left (a+b \tanh ^2(c+d x)\right )}}{d}\)

\(\Big \downarrow \) 402

\(\displaystyle \frac {\frac {-\frac {\int -\frac {2 \left (a^2+4 b a+b^2+(a-b) b \tanh ^2(c+d x)\right )}{\left (1-\tanh ^2(c+d x)\right ) \left (b \tanh ^2(c+d x)+a\right )}d\tanh (c+d x)}{2 a (a+b)}-\frac {b (a-b) \tanh (c+d x)}{a (a+b) \left (a+b \tanh ^2(c+d x)\right )}}{2 (a+b)}+\frac {\tanh (c+d x)}{2 (a+b) \left (1-\tanh ^2(c+d x)\right ) \left (a+b \tanh ^2(c+d x)\right )}}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\frac {\frac {\int \frac {a^2+4 b a+b^2+(a-b) b \tanh ^2(c+d x)}{\left (1-\tanh ^2(c+d x)\right ) \left (b \tanh ^2(c+d x)+a\right )}d\tanh (c+d x)}{a (a+b)}-\frac {b (a-b) \tanh (c+d x)}{a (a+b) \left (a+b \tanh ^2(c+d x)\right )}}{2 (a+b)}+\frac {\tanh (c+d x)}{2 (a+b) \left (1-\tanh ^2(c+d x)\right ) \left (a+b \tanh ^2(c+d x)\right )}}{d}\)

\(\Big \downarrow \) 397

\(\displaystyle \frac {\frac {\frac {\frac {b^2 (5 a+b) \int \frac {1}{b \tanh ^2(c+d x)+a}d\tanh (c+d x)}{a+b}+\frac {a (a+5 b) \int \frac {1}{1-\tanh ^2(c+d x)}d\tanh (c+d x)}{a+b}}{a (a+b)}-\frac {b (a-b) \tanh (c+d x)}{a (a+b) \left (a+b \tanh ^2(c+d x)\right )}}{2 (a+b)}+\frac {\tanh (c+d x)}{2 (a+b) \left (1-\tanh ^2(c+d x)\right ) \left (a+b \tanh ^2(c+d x)\right )}}{d}\)

\(\Big \downarrow \) 218

\(\displaystyle \frac {\frac {\frac {\frac {a (a+5 b) \int \frac {1}{1-\tanh ^2(c+d x)}d\tanh (c+d x)}{a+b}+\frac {b^{3/2} (5 a+b) \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} (a+b)}}{a (a+b)}-\frac {b (a-b) \tanh (c+d x)}{a (a+b) \left (a+b \tanh ^2(c+d x)\right )}}{2 (a+b)}+\frac {\tanh (c+d x)}{2 (a+b) \left (1-\tanh ^2(c+d x)\right ) \left (a+b \tanh ^2(c+d x)\right )}}{d}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\frac {\frac {\frac {b^{3/2} (5 a+b) \arctan \left (\frac {\sqrt {b} \tanh (c+d x)}{\sqrt {a}}\right )}{\sqrt {a} (a+b)}+\frac {a (a+5 b) \text {arctanh}(\tanh (c+d x))}{a+b}}{a (a+b)}-\frac {b (a-b) \tanh (c+d x)}{a (a+b) \left (a+b \tanh ^2(c+d x)\right )}}{2 (a+b)}+\frac {\tanh (c+d x)}{2 (a+b) \left (1-\tanh ^2(c+d x)\right ) \left (a+b \tanh ^2(c+d x)\right )}}{d}\)

Input:

Int[Cosh[c + d*x]^2/(a + b*Tanh[c + d*x]^2)^2,x]
 

Output:

(Tanh[c + d*x]/(2*(a + b)*(1 - Tanh[c + d*x]^2)*(a + b*Tanh[c + d*x]^2)) + 
 (((b^(3/2)*(5*a + b)*ArcTan[(Sqrt[b]*Tanh[c + d*x])/Sqrt[a]])/(Sqrt[a]*(a 
 + b)) + (a*(a + 5*b)*ArcTanh[Tanh[c + d*x]])/(a + b))/(a*(a + b)) - ((a - 
 b)*b*Tanh[c + d*x])/(a*(a + b)*(a + b*Tanh[c + d*x]^2)))/(2*(a + b)))/d
 

Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 316
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(-b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d)) 
), x] + Simp[1/(2*a*(p + 1)*(b*c - a*d))   Int[(a + b*x^2)^(p + 1)*(c + d*x 
^2)^q*Simp[b*c + 2*(p + 1)*(b*c - a*d) + d*b*(2*(p + q + 2) + 1)*x^2, x], x 
], x] /; FreeQ[{a, b, c, d, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&  ! 
( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomialQ[a, b, c, d, 2, 
 p, q, x]
 

rule 397
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_ 
Symbol] :> Simp[(b*e - a*f)/(b*c - a*d)   Int[1/(a + b*x^2), x], x] - Simp[ 
(d*e - c*f)/(b*c - a*d)   Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e 
, f}, x]
 

rule 402
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x 
_)^2), x_Symbol] :> Simp[(-(b*e - a*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^ 
(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p + 1)) 
 Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d) 
*(p + 1) + d*(b*e - a*f)*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, q}, x] && LtQ[p, -1]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4158
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_ 
)])^(n_))^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim 
p[ff/(c^(m - 1)*f)   Subst[Int[(c^2 + ff^2*x^2)^(m/2 - 1)*(a + b*(ff*x)^n)^ 
p, x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && I 
ntegerQ[m/2] && (IntegersQ[n, p] || IGtQ[m, 0] || IGtQ[p, 0] || EqQ[n^2, 4] 
 || EqQ[n^2, 16])
 
Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(385\) vs. \(2(124)=248\).

Time = 9.18 (sec) , antiderivative size = 386, normalized size of antiderivative = 2.76

method result size
derivativedivides \(\frac {\frac {1}{2 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {1}{2 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (-a -5 b \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 \left (a +b \right )^{3}}-\frac {1}{2 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {1}{2 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (a +5 b \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 \left (a +b \right )^{3}}-\frac {2 b^{2} \left (\frac {-\frac {\left (a +b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{2 a}-\frac {\left (a +b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a}+\frac {\left (5 a +b \right ) \left (\frac {\left (a +\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}-\frac {\left (-a +\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2}\right )}{\left (a +b \right )^{3}}}{d}\) \(386\)
default \(\frac {\frac {1}{2 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}+\frac {1}{2 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}+\frac {\left (-a -5 b \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 \left (a +b \right )^{3}}-\frac {1}{2 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )^{2}}+\frac {1}{2 \left (a +b \right )^{2} \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}+\frac {\left (a +5 b \right ) \ln \left (\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 \left (a +b \right )^{3}}-\frac {2 b^{2} \left (\frac {-\frac {\left (a +b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{3}}{2 a}-\frac {\left (a +b \right ) \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{2 a}}{\tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{4} a +2 \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} a +4 b \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )^{2}+a}+\frac {\left (5 a +b \right ) \left (\frac {\left (a +\sqrt {\left (a +b \right ) b}+b \right ) \arctan \left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}+a +2 b \right ) a}}-\frac {\left (-a +\sqrt {\left (a +b \right ) b}-b \right ) \operatorname {arctanh}\left (\frac {a \tanh \left (\frac {d x}{2}+\frac {c}{2}\right )}{\sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2 a \sqrt {\left (a +b \right ) b}\, \sqrt {\left (2 \sqrt {\left (a +b \right ) b}-a -2 b \right ) a}}\right )}{2}\right )}{\left (a +b \right )^{3}}}{d}\) \(386\)
risch \(\frac {x a}{2 \left (a +b \right ) \left (a^{2}+2 a b +b^{2}\right )}+\frac {5 x b}{2 \left (a +b \right ) \left (a^{2}+2 a b +b^{2}\right )}+\frac {{\mathrm e}^{2 d x +2 c}}{8 \left (a^{2}+2 a b +b^{2}\right ) d}-\frac {{\mathrm e}^{-2 d x -2 c}}{8 \left (a^{2}+2 a b +b^{2}\right ) d}-\frac {b^{2} \left ({\mathrm e}^{2 d x +2 c} a -{\mathrm e}^{2 d x +2 c} b +a +b \right )}{d \left (a +b \right )^{3} a \left ({\mathrm e}^{4 d x +4 c} a +b \,{\mathrm e}^{4 d x +4 c}+2 \,{\mathrm e}^{2 d x +2 c} a -2 \,{\mathrm e}^{2 d x +2 c} b +a +b \right )}+\frac {5 \sqrt {-a b}\, b \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {-a b}+a -b}{a +b}\right )}{4 a \left (a +b \right )^{3} d}+\frac {\sqrt {-a b}\, b^{2} \ln \left ({\mathrm e}^{2 d x +2 c}+\frac {2 \sqrt {-a b}+a -b}{a +b}\right )}{4 a^{2} \left (a +b \right )^{3} d}-\frac {5 \sqrt {-a b}\, b \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a b}-a +b}{a +b}\right )}{4 a \left (a +b \right )^{3} d}-\frac {\sqrt {-a b}\, b^{2} \ln \left ({\mathrm e}^{2 d x +2 c}-\frac {2 \sqrt {-a b}-a +b}{a +b}\right )}{4 a^{2} \left (a +b \right )^{3} d}\) \(399\)

Input:

int(cosh(d*x+c)^2/(a+tanh(d*x+c)^2*b)^2,x,method=_RETURNVERBOSE)
 

Output:

1/d*(1/2/(a+b)^2/(tanh(1/2*d*x+1/2*c)-1)^2+1/2/(a+b)^2/(tanh(1/2*d*x+1/2*c 
)-1)+1/2/(a+b)^3*(-a-5*b)*ln(tanh(1/2*d*x+1/2*c)-1)-1/2/(a+b)^2/(tanh(1/2* 
d*x+1/2*c)+1)^2+1/2/(a+b)^2/(tanh(1/2*d*x+1/2*c)+1)+1/2*(a+5*b)/(a+b)^3*ln 
(tanh(1/2*d*x+1/2*c)+1)-2/(a+b)^3*b^2*((-1/2*(a+b)/a*tanh(1/2*d*x+1/2*c)^3 
-1/2*(a+b)/a*tanh(1/2*d*x+1/2*c))/(tanh(1/2*d*x+1/2*c)^4*a+2*tanh(1/2*d*x+ 
1/2*c)^2*a+4*b*tanh(1/2*d*x+1/2*c)^2+a)+1/2*(5*a+b)*(1/2*(a+((a+b)*b)^(1/2 
)+b)/a/((a+b)*b)^(1/2)/((2*((a+b)*b)^(1/2)+a+2*b)*a)^(1/2)*arctan(a*tanh(1 
/2*d*x+1/2*c)/((2*((a+b)*b)^(1/2)+a+2*b)*a)^(1/2))-1/2*(-a+((a+b)*b)^(1/2) 
-b)/a/((a+b)*b)^(1/2)/((2*((a+b)*b)^(1/2)-a-2*b)*a)^(1/2)*arctanh(a*tanh(1 
/2*d*x+1/2*c)/((2*((a+b)*b)^(1/2)-a-2*b)*a)^(1/2)))))
 

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2001 vs. \(2 (124) = 248\).

Time = 0.18 (sec) , antiderivative size = 4324, normalized size of antiderivative = 30.89 \[ \int \frac {\cosh ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\text {Too large to display} \] Input:

integrate(cosh(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [F(-1)]

Timed out. \[ \int \frac {\cosh ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\text {Timed out} \] Input:

integrate(cosh(d*x+c)**2/(a+b*tanh(d*x+c)**2)**2,x)
 

Output:

Timed out
 

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 840 vs. \(2 (124) = 248\).

Time = 0.28 (sec) , antiderivative size = 840, normalized size of antiderivative = 6.00 \[ \int \frac {\cosh ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx =\text {Too large to display} \] Input:

integrate(cosh(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x, algorithm="maxima")
 

Output:

1/2*b*log((a + b)*e^(4*d*x + 4*c) + 2*(a - b)*e^(2*d*x + 2*c) + a + b)/((a 
^3 + 3*a^2*b + 3*a*b^2 + b^3)*d) - 1/2*b*log(2*(a - b)*e^(-2*d*x - 2*c) + 
(a + b)*e^(-4*d*x - 4*c) + a + b)/((a^3 + 3*a^2*b + 3*a*b^2 + b^3)*d) - 1/ 
8*(3*a^2*b - 6*a*b^2 - b^3)*arctan(1/2*((a + b)*e^(2*d*x + 2*c) + a - b)/s 
qrt(a*b))/((a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3)*sqrt(a*b)*d) + 1/8*(3*a^2*b 
 - 6*a*b^2 - b^3)*arctan(1/2*((a + b)*e^(-2*d*x - 2*c) + a - b)/sqrt(a*b)) 
/((a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3)*sqrt(a*b)*d) - 1/4*(3*a*b + b^2)*arc 
tan(1/2*((a + b)*e^(-2*d*x - 2*c) + a - b)/sqrt(a*b))/((a^3 + 2*a^2*b + a* 
b^2)*sqrt(a*b)*d) + 1/4*(a^2*b - b^3 + (a^2*b - 6*a*b^2 + b^3)*e^(2*d*x + 
2*c))/((a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4 + (a^5 + 4*a^4*b + 6 
*a^3*b^2 + 4*a^2*b^3 + a*b^4)*e^(4*d*x + 4*c) + 2*(a^5 + 2*a^4*b - 2*a^2*b 
^3 - a*b^4)*e^(2*d*x + 2*c))*d) - 1/4*(a^2*b - b^3 + (a^2*b - 6*a*b^2 + b^ 
3)*e^(-2*d*x - 2*c))/((a^5 + 4*a^4*b + 6*a^3*b^2 + 4*a^2*b^3 + a*b^4 + 2*( 
a^5 + 2*a^4*b - 2*a^2*b^3 - a*b^4)*e^(-2*d*x - 2*c) + (a^5 + 4*a^4*b + 6*a 
^3*b^2 + 4*a^2*b^3 + a*b^4)*e^(-4*d*x - 4*c))*d) + 1/2*(a*b + b^2 + (a*b - 
 b^2)*e^(-2*d*x - 2*c))/((a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3 + 2*(a^4 + a^3 
*b - a^2*b^2 - a*b^3)*e^(-2*d*x - 2*c) + (a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^ 
3)*e^(-4*d*x - 4*c))*d) + 1/2*(d*x + c)/((a^2 + 2*a*b + b^2)*d) + 1/8*e^(2 
*d*x + 2*c)/((a^2 + 2*a*b + b^2)*d) - 1/8*e^(-2*d*x - 2*c)/((a^2 + 2*a*b + 
 b^2)*d)
 

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 416 vs. \(2 (124) = 248\).

Time = 0.74 (sec) , antiderivative size = 416, normalized size of antiderivative = 2.97 \[ \int \frac {\cosh ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\frac {\frac {12 \, {\left (d x + c\right )} {\left (a + 5 \, b\right )}}{a^{3} + 3 \, a^{2} b + 3 \, a b^{2} + b^{3}} + \frac {12 \, {\left (5 \, a b^{2} + b^{3}\right )} \arctan \left (\frac {a e^{\left (2 \, d x + 2 \, c\right )} + b e^{\left (2 \, d x + 2 \, c\right )} + a - b}{2 \, \sqrt {a b}}\right )}{{\left (a^{4} + 3 \, a^{3} b + 3 \, a^{2} b^{2} + a b^{3}\right )} \sqrt {a b}} + \frac {3 \, e^{\left (2 \, d x + 2 \, c\right )}}{a^{2} + 2 \, a b + b^{2}} - \frac {2 \, a^{3} e^{\left (6 \, d x + 6 \, c\right )} + 12 \, a^{2} b e^{\left (6 \, d x + 6 \, c\right )} + 10 \, a b^{2} e^{\left (6 \, d x + 6 \, c\right )} + 7 \, a^{3} e^{\left (4 \, d x + 4 \, c\right )} + 22 \, a^{2} b e^{\left (4 \, d x + 4 \, c\right )} + 7 \, a b^{2} e^{\left (4 \, d x + 4 \, c\right )} - 24 \, b^{3} e^{\left (4 \, d x + 4 \, c\right )} + 8 \, a^{3} e^{\left (2 \, d x + 2 \, c\right )} + 12 \, a^{2} b e^{\left (2 \, d x + 2 \, c\right )} + 28 \, a b^{2} e^{\left (2 \, d x + 2 \, c\right )} + 24 \, b^{3} e^{\left (2 \, d x + 2 \, c\right )} + 3 \, a^{3} + 6 \, a^{2} b + 3 \, a b^{2}}{{\left (a^{4} + 3 \, a^{3} b + 3 \, a^{2} b^{2} + a b^{3}\right )} {\left (a e^{\left (6 \, d x + 6 \, c\right )} + b e^{\left (6 \, d x + 6 \, c\right )} + 2 \, a e^{\left (4 \, d x + 4 \, c\right )} - 2 \, b e^{\left (4 \, d x + 4 \, c\right )} + a e^{\left (2 \, d x + 2 \, c\right )} + b e^{\left (2 \, d x + 2 \, c\right )}\right )}}}{24 \, d} \] Input:

integrate(cosh(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x, algorithm="giac")
 

Output:

1/24*(12*(d*x + c)*(a + 5*b)/(a^3 + 3*a^2*b + 3*a*b^2 + b^3) + 12*(5*a*b^2 
 + b^3)*arctan(1/2*(a*e^(2*d*x + 2*c) + b*e^(2*d*x + 2*c) + a - b)/sqrt(a* 
b))/((a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3)*sqrt(a*b)) + 3*e^(2*d*x + 2*c)/(a 
^2 + 2*a*b + b^2) - (2*a^3*e^(6*d*x + 6*c) + 12*a^2*b*e^(6*d*x + 6*c) + 10 
*a*b^2*e^(6*d*x + 6*c) + 7*a^3*e^(4*d*x + 4*c) + 22*a^2*b*e^(4*d*x + 4*c) 
+ 7*a*b^2*e^(4*d*x + 4*c) - 24*b^3*e^(4*d*x + 4*c) + 8*a^3*e^(2*d*x + 2*c) 
 + 12*a^2*b*e^(2*d*x + 2*c) + 28*a*b^2*e^(2*d*x + 2*c) + 24*b^3*e^(2*d*x + 
 2*c) + 3*a^3 + 6*a^2*b + 3*a*b^2)/((a^4 + 3*a^3*b + 3*a^2*b^2 + a*b^3)*(a 
*e^(6*d*x + 6*c) + b*e^(6*d*x + 6*c) + 2*a*e^(4*d*x + 4*c) - 2*b*e^(4*d*x 
+ 4*c) + a*e^(2*d*x + 2*c) + b*e^(2*d*x + 2*c))))/d
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\cosh ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx=\int \frac {{\mathrm {cosh}\left (c+d\,x\right )}^2}{{\left (b\,{\mathrm {tanh}\left (c+d\,x\right )}^2+a\right )}^2} \,d x \] Input:

int(cosh(c + d*x)^2/(a + b*tanh(c + d*x)^2)^2,x)
 

Output:

int(cosh(c + d*x)^2/(a + b*tanh(c + d*x)^2)^2, x)
 

Reduce [B] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 1269, normalized size of antiderivative = 9.06 \[ \int \frac {\cosh ^2(c+d x)}{\left (a+b \tanh ^2(c+d x)\right )^2} \, dx =\text {Too large to display} \] Input:

int(cosh(d*x+c)^2/(a+b*tanh(d*x+c)^2)^2,x)
 

Output:

(20*e**(6*c + 6*d*x)*sqrt(b)*sqrt(a)*atan((e**(c + d*x)*sqrt(a + b) - sqrt 
(b))/sqrt(a))*a**2*b + 24*e**(6*c + 6*d*x)*sqrt(b)*sqrt(a)*atan((e**(c + d 
*x)*sqrt(a + b) - sqrt(b))/sqrt(a))*a*b**2 + 4*e**(6*c + 6*d*x)*sqrt(b)*sq 
rt(a)*atan((e**(c + d*x)*sqrt(a + b) - sqrt(b))/sqrt(a))*b**3 + 40*e**(4*c 
 + 4*d*x)*sqrt(b)*sqrt(a)*atan((e**(c + d*x)*sqrt(a + b) - sqrt(b))/sqrt(a 
))*a**2*b - 32*e**(4*c + 4*d*x)*sqrt(b)*sqrt(a)*atan((e**(c + d*x)*sqrt(a 
+ b) - sqrt(b))/sqrt(a))*a*b**2 - 8*e**(4*c + 4*d*x)*sqrt(b)*sqrt(a)*atan( 
(e**(c + d*x)*sqrt(a + b) - sqrt(b))/sqrt(a))*b**3 + 20*e**(2*c + 2*d*x)*s 
qrt(b)*sqrt(a)*atan((e**(c + d*x)*sqrt(a + b) - sqrt(b))/sqrt(a))*a**2*b + 
 24*e**(2*c + 2*d*x)*sqrt(b)*sqrt(a)*atan((e**(c + d*x)*sqrt(a + b) - sqrt 
(b))/sqrt(a))*a*b**2 + 4*e**(2*c + 2*d*x)*sqrt(b)*sqrt(a)*atan((e**(c + d* 
x)*sqrt(a + b) - sqrt(b))/sqrt(a))*b**3 - 20*e**(6*c + 6*d*x)*sqrt(b)*sqrt 
(a)*atan((e**(c + d*x)*sqrt(a + b) + sqrt(b))/sqrt(a))*a**2*b - 24*e**(6*c 
 + 6*d*x)*sqrt(b)*sqrt(a)*atan((e**(c + d*x)*sqrt(a + b) + sqrt(b))/sqrt(a 
))*a*b**2 - 4*e**(6*c + 6*d*x)*sqrt(b)*sqrt(a)*atan((e**(c + d*x)*sqrt(a + 
 b) + sqrt(b))/sqrt(a))*b**3 - 40*e**(4*c + 4*d*x)*sqrt(b)*sqrt(a)*atan((e 
**(c + d*x)*sqrt(a + b) + sqrt(b))/sqrt(a))*a**2*b + 32*e**(4*c + 4*d*x)*s 
qrt(b)*sqrt(a)*atan((e**(c + d*x)*sqrt(a + b) + sqrt(b))/sqrt(a))*a*b**2 + 
 8*e**(4*c + 4*d*x)*sqrt(b)*sqrt(a)*atan((e**(c + d*x)*sqrt(a + b) + sqrt( 
b))/sqrt(a))*b**3 - 20*e**(2*c + 2*d*x)*sqrt(b)*sqrt(a)*atan((e**(c + d...