\(\int \frac {\text {csch}^{\frac {3}{2}}(a+b \log (c x^n))}{x} \, dx\) [171]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [B] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 105 \[ \int \frac {\text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {2 \cosh \left (a+b \log \left (c x^n\right )\right ) \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}{b n}-\frac {2 i E\left (\left .\frac {1}{4} \left (2 i a-\pi +2 i b \log \left (c x^n\right )\right )\right |2\right )}{b n \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )} \sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )}} \] Output:

-2*cosh(a+b*ln(c*x^n))*csch(a+b*ln(c*x^n))^(1/2)/b/n+2*I*EllipticE(cos(1/2 
*I*a+1/4*Pi+1/2*I*b*ln(c*x^n)),2^(1/2))/b/n/csch(a+b*ln(c*x^n))^(1/2)/(I*s 
inh(a+b*ln(c*x^n)))^(1/2)
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.08 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.76 \[ \int \frac {\text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {2 \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )} \left (\cosh \left (a+b \log \left (c x^n\right )\right )-E\left (\left .\frac {1}{4} \left (-2 i a+\pi -2 i b \log \left (c x^n\right )\right )\right |2\right ) \sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )}\right )}{b n} \] Input:

Integrate[Csch[a + b*Log[c*x^n]]^(3/2)/x,x]
 

Output:

(-2*Sqrt[Csch[a + b*Log[c*x^n]]]*(Cosh[a + b*Log[c*x^n]] - EllipticE[((-2* 
I)*a + Pi - (2*I)*b*Log[c*x^n])/4, 2]*Sqrt[I*Sinh[a + b*Log[c*x^n]]]))/(b* 
n)
 

Rubi [A] (verified)

Time = 0.44 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.368, Rules used = {3039, 3042, 4255, 3042, 4258, 3042, 3119}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx\)

\(\Big \downarrow \) 3039

\(\displaystyle \frac {\int \text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \left (i \csc \left (i a+i b \log \left (c x^n\right )\right )\right )^{3/2}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 4255

\(\displaystyle \frac {\int \frac {1}{\sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}d\log \left (c x^n\right )-\frac {2 \cosh \left (a+b \log \left (c x^n\right )\right ) \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}{b}}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {2 \cosh \left (a+b \log \left (c x^n\right )\right ) \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}{b}+\int \frac {1}{\sqrt {i \csc \left (i a+i b \log \left (c x^n\right )\right )}}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {-\frac {2 \cosh \left (a+b \log \left (c x^n\right )\right ) \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}{b}+\frac {\int \sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )}d\log \left (c x^n\right )}{\sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )} \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {2 \cosh \left (a+b \log \left (c x^n\right )\right ) \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}{b}+\frac {\int \sqrt {\sin \left (i a+i b \log \left (c x^n\right )\right )}d\log \left (c x^n\right )}{\sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )} \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}}{n}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {-\frac {2 \cosh \left (a+b \log \left (c x^n\right )\right ) \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}{b}-\frac {2 i E\left (\left .\frac {1}{2} \left (i a+i b \log \left (c x^n\right )-\frac {\pi }{2}\right )\right |2\right )}{b \sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )} \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}}{n}\)

Input:

Int[Csch[a + b*Log[c*x^n]]^(3/2)/x,x]
 

Output:

((-2*Cosh[a + b*Log[c*x^n]]*Sqrt[Csch[a + b*Log[c*x^n]]])/b - ((2*I)*Ellip 
ticE[(I*a - Pi/2 + I*b*Log[c*x^n])/2, 2])/(b*Sqrt[Csch[a + b*Log[c*x^n]]]* 
Sqrt[I*Sinh[a + b*Log[c*x^n]]]))/n
 

Defintions of rubi rules used

rule 3039
Int[u_, x_Symbol] :> With[{lst = FunctionOfLog[Cancel[x*u], x]}, Simp[1/lst 
[[3]]   Subst[Int[lst[[1]], x], x, Log[lst[[2]]]], x] /;  !FalseQ[lst]] /; 
NonsumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4255
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d* 
x]*((b*Csc[c + d*x])^(n - 1)/(d*(n - 1))), x] + Simp[b^2*((n - 2)/(n - 1)) 
  Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] 
&& IntegerQ[2*n]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 
Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 211 vs. \(2 (94 ) = 188\).

Time = 0.47 (sec) , antiderivative size = 212, normalized size of antiderivative = 2.02

method result size
derivativedivides \(\frac {2 \sqrt {1-i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \sqrt {2}\, \sqrt {1+i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \sqrt {i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \operatorname {EllipticE}\left (\sqrt {1-i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}, \frac {\sqrt {2}}{2}\right )-\sqrt {1-i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \sqrt {2}\, \sqrt {1+i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \sqrt {i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \operatorname {EllipticF}\left (\sqrt {1-i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}, \frac {\sqrt {2}}{2}\right )-2 {\cosh \left (a +b \ln \left (c \,x^{n}\right )\right )}^{2}}{n \cosh \left (a +b \ln \left (c \,x^{n}\right )\right ) \sqrt {\sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, b}\) \(212\)
default \(\frac {2 \sqrt {1-i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \sqrt {2}\, \sqrt {1+i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \sqrt {i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \operatorname {EllipticE}\left (\sqrt {1-i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}, \frac {\sqrt {2}}{2}\right )-\sqrt {1-i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \sqrt {2}\, \sqrt {1+i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \sqrt {i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \operatorname {EllipticF}\left (\sqrt {1-i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}, \frac {\sqrt {2}}{2}\right )-2 {\cosh \left (a +b \ln \left (c \,x^{n}\right )\right )}^{2}}{n \cosh \left (a +b \ln \left (c \,x^{n}\right )\right ) \sqrt {\sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, b}\) \(212\)

Input:

int(csch(a+b*ln(c*x^n))^(3/2)/x,x,method=_RETURNVERBOSE)
 

Output:

1/n*(2*(1-I*sinh(a+b*ln(c*x^n)))^(1/2)*2^(1/2)*(1+I*sinh(a+b*ln(c*x^n)))^( 
1/2)*(I*sinh(a+b*ln(c*x^n)))^(1/2)*EllipticE((1-I*sinh(a+b*ln(c*x^n)))^(1/ 
2),1/2*2^(1/2))-(1-I*sinh(a+b*ln(c*x^n)))^(1/2)*2^(1/2)*(1+I*sinh(a+b*ln(c 
*x^n)))^(1/2)*(I*sinh(a+b*ln(c*x^n)))^(1/2)*EllipticF((1-I*sinh(a+b*ln(c*x 
^n)))^(1/2),1/2*2^(1/2))-2*cosh(a+b*ln(c*x^n))^2)/cosh(a+b*ln(c*x^n))/sinh 
(a+b*ln(c*x^n))^(1/2)/b
 

Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 159, normalized size of antiderivative = 1.51 \[ \int \frac {\text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=-\frac {2 \, {\left (\sqrt {2} \sqrt {\frac {\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )}{\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} + 2 \, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )^{2} - 1}} {\left (\cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )} + \sqrt {2} {\rm weierstrassZeta}\left (4, 0, {\rm weierstrassPInverse}\left (4, 0, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )\right )\right )}}{b n} \] Input:

integrate(csch(a+b*log(c*x^n))^(3/2)/x,x, algorithm="fricas")
 

Output:

-2*(sqrt(2)*sqrt((cosh(b*n*log(x) + b*log(c) + a) + sinh(b*n*log(x) + b*lo 
g(c) + a))/(cosh(b*n*log(x) + b*log(c) + a)^2 + 2*cosh(b*n*log(x) + b*log( 
c) + a)*sinh(b*n*log(x) + b*log(c) + a) + sinh(b*n*log(x) + b*log(c) + a)^ 
2 - 1))*(cosh(b*n*log(x) + b*log(c) + a) + sinh(b*n*log(x) + b*log(c) + a) 
) + sqrt(2)*weierstrassZeta(4, 0, weierstrassPInverse(4, 0, cosh(b*n*log(x 
) + b*log(c) + a) + sinh(b*n*log(x) + b*log(c) + a))))/(b*n)
 

Sympy [F]

\[ \int \frac {\text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int \frac {\operatorname {csch}^{\frac {3}{2}}{\left (a + b \log {\left (c x^{n} \right )} \right )}}{x}\, dx \] Input:

integrate(csch(a+b*ln(c*x**n))**(3/2)/x,x)
 

Output:

Integral(csch(a + b*log(c*x**n))**(3/2)/x, x)
 

Maxima [F]

\[ \int \frac {\text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int { \frac {\operatorname {csch}\left (b \log \left (c x^{n}\right ) + a\right )^{\frac {3}{2}}}{x} \,d x } \] Input:

integrate(csch(a+b*log(c*x^n))^(3/2)/x,x, algorithm="maxima")
 

Output:

integrate(csch(b*log(c*x^n) + a)^(3/2)/x, x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {\text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\text {Timed out} \] Input:

integrate(csch(a+b*log(c*x^n))^(3/2)/x,x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int \frac {{\left (\frac {1}{\mathrm {sinh}\left (a+b\,\ln \left (c\,x^n\right )\right )}\right )}^{3/2}}{x} \,d x \] Input:

int((1/sinh(a + b*log(c*x^n)))^(3/2)/x,x)
 

Output:

int((1/sinh(a + b*log(c*x^n)))^(3/2)/x, x)
 

Reduce [F]

\[ \int \frac {\text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right )}{x} \, dx=\int \frac {\sqrt {\mathrm {csch}\left (\mathrm {log}\left (x^{n} c \right ) b +a \right )}\, \mathrm {csch}\left (\mathrm {log}\left (x^{n} c \right ) b +a \right )}{x}d x \] Input:

int(csch(a+b*log(c*x^n))^(3/2)/x,x)
 

Output:

int((sqrt(csch(log(x**n*c)*b + a))*csch(log(x**n*c)*b + a))/x,x)