\(\int \frac {\sqrt {\text {csch}(a+b \log (c x^n))}}{x} \, dx\) [172]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [F]
Maxima [F]
Giac [F(-1)]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 19, antiderivative size = 70 \[ \int \frac {\sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx=-\frac {2 i \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )} \operatorname {EllipticF}\left (\frac {1}{4} \left (2 i a-\pi +2 i b \log \left (c x^n\right )\right ),2\right ) \sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )}}{b n} \] Output:

-2*I*csch(a+b*ln(c*x^n))^(1/2)*InverseJacobiAM(1/2*I*a-1/4*Pi+1/2*I*b*ln(c 
*x^n),2^(1/2))*(I*sinh(a+b*ln(c*x^n)))^(1/2)/b/n
                                                                                    
                                                                                    
 

Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.94 \[ \int \frac {\sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx=\frac {2 \text {csch}^{\frac {3}{2}}\left (a+b \log \left (c x^n\right )\right ) \operatorname {EllipticF}\left (\frac {1}{4} \left (-2 i a+\pi -2 i b \log \left (c x^n\right )\right ),2\right ) \left (i \sinh \left (a+b \log \left (c x^n\right )\right )\right )^{3/2}}{b n} \] Input:

Integrate[Sqrt[Csch[a + b*Log[c*x^n]]]/x,x]
 

Output:

(2*Csch[a + b*Log[c*x^n]]^(3/2)*EllipticF[((-2*I)*a + Pi - (2*I)*b*Log[c*x 
^n])/4, 2]*(I*Sinh[a + b*Log[c*x^n]])^(3/2))/(b*n)
 

Rubi [A] (verified)

Time = 0.30 (sec) , antiderivative size = 72, normalized size of antiderivative = 1.03, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {3039, 3042, 4258, 3042, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx\)

\(\Big \downarrow \) 3039

\(\displaystyle \frac {\int \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \sqrt {i \csc \left (i a+i b \log \left (c x^n\right )\right )}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 4258

\(\displaystyle \frac {\sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )} \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )} \int \frac {1}{\sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )}}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )} \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )} \int \frac {1}{\sqrt {\sin \left (i a+i b \log \left (c x^n\right )\right )}}d\log \left (c x^n\right )}{n}\)

\(\Big \downarrow \) 3120

\(\displaystyle -\frac {2 i \sqrt {i \sinh \left (a+b \log \left (c x^n\right )\right )} \sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )} \operatorname {EllipticF}\left (\frac {1}{2} \left (i a+i b \log \left (c x^n\right )-\frac {\pi }{2}\right ),2\right )}{b n}\)

Input:

Int[Sqrt[Csch[a + b*Log[c*x^n]]]/x,x]
 

Output:

((-2*I)*Sqrt[Csch[a + b*Log[c*x^n]]]*EllipticF[(I*a - Pi/2 + I*b*Log[c*x^n 
])/2, 2]*Sqrt[I*Sinh[a + b*Log[c*x^n]]])/(b*n)
 

Defintions of rubi rules used

rule 3039
Int[u_, x_Symbol] :> With[{lst = FunctionOfLog[Cancel[x*u], x]}, Simp[1/lst 
[[3]]   Subst[Int[lst[[1]], x], x, Log[lst[[2]]]], x] /;  !FalseQ[lst]] /; 
NonsumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 4258
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x] 
)^n*Sin[c + d*x]^n   Int[1/Sin[c + d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && 
 EqQ[n^2, 1/4]
 
Maple [A] (verified)

Time = 0.42 (sec) , antiderivative size = 120, normalized size of antiderivative = 1.71

method result size
derivativedivides \(\frac {i \sqrt {-i \left (\sinh \left (a +b \ln \left (c \,x^{n}\right )\right )+i\right )}\, \sqrt {2}\, \sqrt {-i \left (-\sinh \left (a +b \ln \left (c \,x^{n}\right )\right )+i\right )}\, \sqrt {i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \operatorname {EllipticF}\left (\sqrt {-i \left (\sinh \left (a +b \ln \left (c \,x^{n}\right )\right )+i\right )}, \frac {\sqrt {2}}{2}\right )}{n \cosh \left (a +b \ln \left (c \,x^{n}\right )\right ) \sqrt {\sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, b}\) \(120\)
default \(\frac {i \sqrt {-i \left (\sinh \left (a +b \ln \left (c \,x^{n}\right )\right )+i\right )}\, \sqrt {2}\, \sqrt {-i \left (-\sinh \left (a +b \ln \left (c \,x^{n}\right )\right )+i\right )}\, \sqrt {i \sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, \operatorname {EllipticF}\left (\sqrt {-i \left (\sinh \left (a +b \ln \left (c \,x^{n}\right )\right )+i\right )}, \frac {\sqrt {2}}{2}\right )}{n \cosh \left (a +b \ln \left (c \,x^{n}\right )\right ) \sqrt {\sinh \left (a +b \ln \left (c \,x^{n}\right )\right )}\, b}\) \(120\)

Input:

int(csch(a+b*ln(c*x^n))^(1/2)/x,x,method=_RETURNVERBOSE)
 

Output:

I/n*(-I*(sinh(a+b*ln(c*x^n))+I))^(1/2)*2^(1/2)*(-I*(-sinh(a+b*ln(c*x^n))+I 
))^(1/2)*(I*sinh(a+b*ln(c*x^n)))^(1/2)*EllipticF((-I*(sinh(a+b*ln(c*x^n))+ 
I))^(1/2),1/2*2^(1/2))/cosh(a+b*ln(c*x^n))/sinh(a+b*ln(c*x^n))^(1/2)/b
 

Fricas [A] (verification not implemented)

Time = 0.08 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.56 \[ \int \frac {\sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx=\frac {2 \, \sqrt {2} {\rm weierstrassPInverse}\left (4, 0, \cosh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) + \sinh \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )\right )}{b n} \] Input:

integrate(csch(a+b*log(c*x^n))^(1/2)/x,x, algorithm="fricas")
 

Output:

2*sqrt(2)*weierstrassPInverse(4, 0, cosh(b*n*log(x) + b*log(c) + a) + sinh 
(b*n*log(x) + b*log(c) + a))/(b*n)
 

Sympy [F]

\[ \int \frac {\sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx=\int \frac {\sqrt {\operatorname {csch}{\left (a + b \log {\left (c x^{n} \right )} \right )}}}{x}\, dx \] Input:

integrate(csch(a+b*ln(c*x**n))**(1/2)/x,x)
 

Output:

Integral(sqrt(csch(a + b*log(c*x**n)))/x, x)
 

Maxima [F]

\[ \int \frac {\sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx=\int { \frac {\sqrt {\operatorname {csch}\left (b \log \left (c x^{n}\right ) + a\right )}}{x} \,d x } \] Input:

integrate(csch(a+b*log(c*x^n))^(1/2)/x,x, algorithm="maxima")
 

Output:

integrate(sqrt(csch(b*log(c*x^n) + a))/x, x)
 

Giac [F(-1)]

Timed out. \[ \int \frac {\sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx=\text {Timed out} \] Input:

integrate(csch(a+b*log(c*x^n))^(1/2)/x,x, algorithm="giac")
 

Output:

Timed out
 

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx=\int \frac {\sqrt {\frac {1}{\mathrm {sinh}\left (a+b\,\ln \left (c\,x^n\right )\right )}}}{x} \,d x \] Input:

int((1/sinh(a + b*log(c*x^n)))^(1/2)/x,x)
 

Output:

int((1/sinh(a + b*log(c*x^n)))^(1/2)/x, x)
 

Reduce [F]

\[ \int \frac {\sqrt {\text {csch}\left (a+b \log \left (c x^n\right )\right )}}{x} \, dx=\int \frac {\sqrt {\mathrm {csch}\left (\mathrm {log}\left (x^{n} c \right ) b +a \right )}}{x}d x \] Input:

int(csch(a+b*log(c*x^n))^(1/2)/x,x)
                                                                                    
                                                                                    
 

Output:

int(sqrt(csch(log(x**n*c)*b + a))/x,x)