1.364 problem 365

Internal problem ID [7945]

Book: Differential Gleichungen, E. Kamke, 3rd ed. Chelsea Pub. NY, 1948
Section: Chapter 1, linear first order
Problem number: 365.
ODE order: 1.
ODE degree: 1.

CAS Maple gives this as type [[_1st_order, _with_linear_symmetries]]

Solve \begin {gather*} \boxed {\left (y f \left (y^{2}+x^{2}\right )-x \right ) y^{\prime }+y+x f \left (y^{2}+x^{2}\right )=0} \end {gather*}

Solution by Maple

Time used: 1.203 (sec). Leaf size: 42

dsolve((y(x)*f(y(x)^2+x^2)-x)*diff(y(x),x)+y(x)+x*f(y(x)^2+x^2) = 0,y(x), singsol=all)
 

\[ y \relax (x ) = \frac {x}{\tan \left (\RootOf \left (-2 \textit {\_Z} -\left (\int _{}^{\frac {x^{2} \left (\tan ^{2}\left (\textit {\_Z} \right )+1\right )}{\tan \left (\textit {\_Z} \right )^{2}}}\frac {f \left (\textit {\_a} \right )}{\textit {\_a}}d \textit {\_a} \right )+2 c_{1}\right )\right )} \]

Solution by Mathematica

Time used: 0.269 (sec). Leaf size: 156

DSolve[x*f[x^2 + y[x]^2] + y[x] + (-x + f[x^2 + y[x]^2]*y[x])*y'[x]==0,y[x],x,IncludeSingularSolutions -> True]
 

\[ \text {Solve}\left [\int _1^{y(x)}\left (\frac {x-f\left (x^2+K[2]^2\right ) K[2]}{x^2+K[2]^2}-\int _1^x\left (\frac {-2 K[1] K[2] f'\left (K[1]^2+K[2]^2\right )-1}{K[1]^2+K[2]^2}-\frac {2 \left (-f\left (K[1]^2+K[2]^2\right ) K[1]-K[2]\right ) K[2]}{\left (K[1]^2+K[2]^2\right )^2}\right )dK[1]\right )dK[2]+\int _1^x\frac {-f\left (K[1]^2+y(x)^2\right ) K[1]-y(x)}{K[1]^2+y(x)^2}dK[1]=c_1,y(x)\right ] \]