2.17 Problems 1601 to 1700

Table 2.17: Main lookup table

#

ODE

Mathematica result

Maple result

1601

\[ {}[y_{1}^{\prime }\relax (t ) = -2 y_{1} \relax (t )+2 y_{2} \relax (t )-6 y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = 2 y_{1} \relax (t )+6 y_{2} \relax (t )+2 y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = -2 y_{1} \relax (t )-2 y_{2} \relax (t )+2 y_{3} \relax (t )] \]

1602

\[ {}[y_{1}^{\prime }\relax (t ) = 3 y_{1} \relax (t )+2 y_{2} \relax (t )-2 y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = -2 y_{1} \relax (t )+7 y_{2} \relax (t )-2 y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = -10 y_{1} \relax (t )+10 y_{2} \relax (t )-5 y_{3} \relax (t )] \]

1603

\[ {}[y_{1}^{\prime }\relax (t ) = 3 y_{1} \relax (t )+y_{2} \relax (t )-y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = 3 y_{1} \relax (t )+5 y_{2} \relax (t )+y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = -6 y_{1} \relax (t )+2 y_{2} \relax (t )+4 y_{3} \relax (t )] \]

1604

\[ {}[y_{1}^{\prime }\relax (t ) = 3 y_{1} \relax (t )+4 y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = -y_{1} \relax (t )+7 y_{2} \relax (t )] \]

1605

\[ {}[y_{1}^{\prime }\relax (t ) = -y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = y_{1} \relax (t )-2 y_{2} \relax (t )] \]

1606

\[ {}[y_{1}^{\prime }\relax (t ) = -7 y_{1} \relax (t )+4 y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = -y_{1} \relax (t )-11 y_{2} \relax (t )] \]

1607

\[ {}[y_{1}^{\prime }\relax (t ) = 3 y_{1} \relax (t )+y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = -y_{1} \relax (t )+y_{2} \relax (t )] \]

1608

\[ {}[y_{1}^{\prime }\relax (t ) = 4 y_{1} \relax (t )+12 y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = -3 y_{1} \relax (t )-8 y_{2} \relax (t )] \]

1609

\[ {}[y_{1}^{\prime }\relax (t ) = -10 y_{1} \relax (t )+9 y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = -4 y_{1} \relax (t )+2 y_{2} \relax (t )] \]

1610

\[ {}[y_{1}^{\prime }\relax (t ) = -13 y_{1} \relax (t )+16 y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = -9 y_{1} \relax (t )+11 y_{2} \relax (t )] \]

1611

\[ {}[y_{1}^{\prime }\relax (t ) = 2 y_{2} \relax (t )+y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = -4 y_{1} \relax (t )+6 y_{2} \relax (t )+y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = 4 y_{2} \relax (t )+2 y_{3} \relax (t )] \]

1612

\[ {}\left [y_{1}^{\prime }\relax (t ) = \frac {y_{1} \relax (t )}{3}+\frac {y_{2} \relax (t )}{3}-y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = -\frac {4 y_{1} \relax (t )}{3}-\frac {4 y_{2} \relax (t )}{3}+y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = -\frac {2 y_{1} \relax (t )}{3}+\frac {y_{2} \relax (t )}{3}\right ] \]

1613

\[ {}[y_{1}^{\prime }\relax (t ) = -y_{1} \relax (t )+y_{2} \relax (t )-y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = -2 y_{1} \relax (t )+2 y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = -y_{1} \relax (t )+3 y_{2} \relax (t )-y_{3} \relax (t )] \]

1614

\[ {}[y_{1}^{\prime }\relax (t ) = 4 y_{1} \relax (t )-2 y_{2} \relax (t )-2 y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = -2 y_{1} \relax (t )+3 y_{2} \relax (t )-y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = 2 y_{1} \relax (t )-y_{2} \relax (t )+3 y_{3} \relax (t )] \]

1615

\[ {}[y_{1}^{\prime }\relax (t ) = 6 y_{1} \relax (t )-5 y_{2} \relax (t )+3 y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = 2 y_{1} \relax (t )-y_{2} \relax (t )+3 y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = 2 y_{1} \relax (t )+y_{2} \relax (t )+y_{3} \relax (t )] \]

1616

\[ {}[y_{1}^{\prime }\relax (t ) = -11 y_{1} \relax (t )+8 y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = -2 y_{1} \relax (t )-3 y_{2} \relax (t )] \]

1617

\[ {}[y_{1}^{\prime }\relax (t ) = 15 y_{1} \relax (t )-9 y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = 16 y_{1} \relax (t )-9 y_{2} \relax (t )] \]

1618

\[ {}[y_{1}^{\prime }\relax (t ) = -3 y_{1} \relax (t )-4 y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = y_{1} \relax (t )-7 y_{2} \relax (t )] \]

1619

\[ {}[y_{1}^{\prime }\relax (t ) = -7 y_{1} \relax (t )+24 y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = -6 y_{1} \relax (t )+17 y_{2} \relax (t )] \]

1620

\[ {}[y_{1}^{\prime }\relax (t ) = -7 y_{1} \relax (t )+3 y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = -3 y_{1} \relax (t )-y_{2} \relax (t )] \]

1621

\[ {}[y_{1}^{\prime }\relax (t ) = -y_{1} \relax (t )+y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = y_{1} \relax (t )-y_{2} \relax (t )-2 y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = -y_{1} \relax (t )-y_{2} \relax (t )-y_{3} \relax (t )] \]

1622

\[ {}[y_{1}^{\prime }\relax (t ) = -2 y_{1} \relax (t )+2 y_{2} \relax (t )+y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = -2 y_{1} \relax (t )+2 y_{2} \relax (t )+y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = -3 y_{1} \relax (t )+3 y_{2} \relax (t )+2 y_{3} \relax (t )] \]

1623

\[ {}[y_{1}^{\prime }\relax (t ) = -7 y_{1} \relax (t )-4 y_{2} \relax (t )+4 y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = y_{1} \relax (t )+y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = -9 y_{1} \relax (t )-5 y_{2} \relax (t )+6 y_{3} \relax (t )] \]

1624

\[ {}[y_{1}^{\prime }\relax (t ) = -y_{1} \relax (t )-4 y_{2} \relax (t )-y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = 3 y_{1} \relax (t )+6 y_{2} \relax (t )+y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = -3 y_{1} \relax (t )-2 y_{2} \relax (t )+3 y_{3} \relax (t )] \]

1625

\[ {}[y_{1}^{\prime }\relax (t ) = 4 y_{1} \relax (t )-8 y_{2} \relax (t )-4 y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = -3 y_{1} \relax (t )-y_{2} \relax (t )-4 y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = y_{1} \relax (t )-y_{2} \relax (t )+9 y_{3} \relax (t )] \]

1626

\[ {}[y_{1}^{\prime }\relax (t ) = -5 y_{1} \relax (t )-y_{2} \relax (t )+11 y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = -7 y_{1} \relax (t )+y_{2} \relax (t )+13 y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = -4 y_{1} \relax (t )+8 y_{3} \relax (t )] \]

1627

\[ {}[y_{1}^{\prime }\relax (t ) = 5 y_{1} \relax (t )-y_{2} \relax (t )+y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = -y_{1} \relax (t )+9 y_{2} \relax (t )-3 y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = -2 y_{1} \relax (t )+2 y_{2} \relax (t )+4 y_{3} \relax (t )] \]

1628

\[ {}[y_{1}^{\prime }\relax (t ) = y_{1} \relax (t )+10 y_{2} \relax (t )-12 y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = 2 y_{1} \relax (t )+2 y_{2} \relax (t )+3 y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = 2 y_{1} \relax (t )-y_{2} \relax (t )+6 y_{3} \relax (t )] \]

1629

\[ {}[y_{1}^{\prime }\relax (t ) = -6 y_{1} \relax (t )-4 y_{2} \relax (t )-4 y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = 2 y_{1} \relax (t )-y_{2} \relax (t )+y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = 2 y_{1} \relax (t )+3 y_{2} \relax (t )+y_{3} \relax (t )] \]

1630

\[ {}[y_{1}^{\prime }\relax (t ) = 2 y_{2} \relax (t )-2 y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = -y_{1} \relax (t )+5 y_{2} \relax (t )-3 y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = y_{1} \relax (t )+y_{2} \relax (t )+y_{3} \relax (t )] \]

1631

\[ {}[y_{1}^{\prime }\relax (t ) = -2 y_{1} \relax (t )-12 y_{2} \relax (t )+10 y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = 2 y_{1} \relax (t )-24 y_{2} \relax (t )+11 y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = 2 y_{1} \relax (t )-24 y_{2} \relax (t )+8 y_{3} \relax (t )] \]

1632

\[ {}[y_{1}^{\prime }\relax (t ) = -y_{1} \relax (t )-12 y_{2} \relax (t )+8 y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = y_{1} \relax (t )-9 y_{2} \relax (t )+4 y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = y_{1} \relax (t )-6 y_{2} \relax (t )+y_{3} \relax (t )] \]

1633

\[ {}[y_{1}^{\prime }\relax (t ) = -4 y_{1} \relax (t )-y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = -y_{1} \relax (t )-3 y_{2} \relax (t )-y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = y_{1} \relax (t )-2 y_{3} \relax (t )] \]

1634

\[ {}[y_{1}^{\prime }\relax (t ) = -3 y_{1} \relax (t )-3 y_{2} \relax (t )+4 y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = 4 y_{1} \relax (t )+5 y_{2} \relax (t )-8 y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = 2 y_{1} \relax (t )+3 y_{2} \relax (t )-5 y_{3} \relax (t )] \]

1635

\[ {}[y_{1}^{\prime }\relax (t ) = -3 y_{1} \relax (t )-y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = y_{1} \relax (t )-y_{2} \relax (t ), y_{3}^{\prime }\relax (t ) = -y_{1} \relax (t )-y_{2} \relax (t )-2 y_{3} \relax (t )] \]

1636

\[ {}[y_{1}^{\prime }\relax (t ) = -y_{1} \relax (t )+2 y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = -5 y_{1} \relax (t )+5 y_{2} \relax (t )] \]

1637

\[ {}[y_{1}^{\prime }\relax (t ) = -11 y_{1} \relax (t )+4 y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = -26 y_{1} \relax (t )+9 y_{2} \relax (t )] \]

1638

\[ {}[y_{1}^{\prime }\relax (t ) = y_{1} \relax (t )+2 y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = -4 y_{1} \relax (t )+5 y_{2} \relax (t )] \]

1639

\[ {}[y_{1}^{\prime }\relax (t ) = 5 y_{1} \relax (t )-6 y_{2} \relax (t ), y_{2}^{\prime }\relax (t ) = 3 y_{1} \relax (t )-y_{2} \relax (t )] \]

1640

\[ {}[y_{1}^{\prime }\relax (t ) = -3 y_{1} \relax (t )-3 y_{2} \relax (t )+y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = 2 y_{2} \relax (t )+2 y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = 5 y_{1} \relax (t )+y_{2} \relax (t )+y_{3} \relax (t )] \]

1641

\[ {}[y_{1}^{\prime }\relax (t ) = -3 y_{1} \relax (t )+3 y_{2} \relax (t )+y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = y_{1} \relax (t )-5 y_{2} \relax (t )-3 y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = -3 y_{1} \relax (t )+7 y_{2} \relax (t )+3 y_{3} \relax (t )] \]

1642

\[ {}[y_{1}^{\prime }\relax (t ) = 2 y_{1} \relax (t )+y_{2} \relax (t )-y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = y_{2} \relax (t )+y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = y_{1} \relax (t )+y_{3} \relax (t )] \]

1643

\[ {}[y_{1}^{\prime }\relax (t ) = -3 y_{1} \relax (t )+y_{2} \relax (t )-3 y_{3} \relax (t ), y_{2}^{\prime }\relax (t ) = 4 y_{1} \relax (t )-y_{2} \relax (t )+2 y_{3} \relax (t ), y_{3}^{\prime }\relax (t ) = 4 y_{1} \relax (t )-2 y_{2} \relax (t )+3 y_{3} \relax (t )] \]

1644

\[ {}y^{\prime }+\sin \relax (t ) y = 0 \]

1645

\[ {}y^{\prime }+{\mathrm e}^{t^{2}} y = 0 \]

1646

\[ {}y^{\prime }-2 t y = t \]

1647

\[ {}y^{\prime }+2 t y = t \]

1648

\[ {}y^{\prime }+y = \frac {1}{t^{2}+1} \]

1649

\[ {}\cos \relax (t ) y+y^{\prime } = 0 \]

1650

\[ {}\sqrt {t}\, \sin \relax (t ) y+y^{\prime } = 0 \]

1651

\[ {}\frac {2 t y}{t^{2}+1}+y^{\prime } = \frac {1}{t^{2}+1} \]

1652

\[ {}y^{\prime }+y = {\mathrm e}^{t} t \]

1653

\[ {}t^{2} y+y^{\prime } = 1 \]

1654

\[ {}t^{2} y+y^{\prime } = t^{2} \]

1655

\[ {}\frac {t y}{t^{2}+1}+y^{\prime } = 1-\frac {t^{3} y}{t^{4}+1} \]

1656

\[ {}\sqrt {t^{2}+1}\, y+y^{\prime } = 0 \]

1657

\[ {}\sqrt {t^{2}+1}\, y \,{\mathrm e}^{-t}+y^{\prime } = 0 \]

1658

\[ {}y^{\prime }-2 t y = t \]

1659

\[ {}t y+y^{\prime } = t +1 \]

1660

\[ {}y^{\prime }+y = \frac {1}{t^{2}+1} \]

1661

\[ {}y^{\prime }-2 t y = 1 \]

1662

\[ {}t y+\left (t^{2}+1\right ) y^{\prime } = \left (t^{2}+1\right )^{\frac {5}{2}} \]

1663

\[ {}4 t y+\left (t^{2}+1\right ) y^{\prime } = t \]

1664

\[ {}y^{\prime }+\frac {y}{t} = \frac {1}{t^{2}} \]

1665

\[ {}y^{\prime }+\frac {y}{\sqrt {t}} = {\mathrm e}^{\frac {\sqrt {t}}{2}} \]

1666

\[ {}y^{\prime }+\frac {y}{t} = \cos \relax (t )+\frac {\sin \relax (t )}{t} \]

1667

\[ {}y^{\prime }+\tan \relax (t ) y = \cos \relax (t ) \sin \relax (t ) \]

1668

\[ {}\left (t^{2}+1\right ) y^{\prime } = 1+y^{2} \]

1669

\[ {}y^{\prime } = \left (t +1\right ) \left (1+y\right ) \]

1670

\[ {}y^{\prime } = 1-t +y^{2}-t y^{2} \]

1671

\[ {}y^{\prime } = {\mathrm e}^{3+t +y} \]

1672

\[ {}\cos \relax (y) \sin \relax (t ) y^{\prime } = \cos \relax (t ) \sin \relax (y) \]

1673

\[ {}t^{2} \left (1+y^{2}\right )+2 y y^{\prime } = 0 \]

1674

\[ {}y^{\prime } = \frac {2 t}{y+t^{2} y} \]

1675

\[ {}\sqrt {t^{2}+1}\, y^{\prime } = \frac {t y^{3}}{\sqrt {t^{2}+1}} \]

1676

\[ {}y^{\prime } = \frac {3 t^{2}+4 t +2}{-2+2 y} \]

1677

\[ {}\cos \relax (y) y^{\prime } = -\frac {t \sin \relax (y)}{t^{2}+1} \]

1678

\[ {}y^{\prime } = k \left (a -y\right ) \left (b -y\right ) \]

1679

\[ {}3 t y^{\prime } = \cos \relax (t ) y \]

1680

\[ {}t y^{\prime } = y+\sqrt {t^{2}+y^{2}} \]

1681

\[ {}2 t y y^{\prime } = 3 y^{2}-t^{2} \]

1682

\[ {}\left (t -\sqrt {t y}\right ) y^{\prime } = y \]

1683

\[ {}y^{\prime } = \frac {t +y}{t -y} \]

1684

\[ {}{\mathrm e}^{\frac {t}{y}} \left (y-t \right ) y^{\prime }+y \left (1+{\mathrm e}^{\frac {t}{y}}\right ) = 0 \]

1685

\[ {}y^{\prime } = \frac {t +y+1}{t -y+3} \]

1686

\[ {}1+t -2 y+\left (4 t -3 y-6\right ) y^{\prime } = 0 \]

1687

\[ {}t +2 y+3+\left (2 t +4 y-1\right ) y^{\prime } = 0 \]

1688

\[ {}2 t \sin \relax (y)+{\mathrm e}^{t} y^{3}+\left (t^{2} \cos \relax (y)+3 \,{\mathrm e}^{t} y^{2}\right ) y^{\prime } = 0 \]

1689

\[ {}1+{\mathrm e}^{t y} \left (1+t y\right )+\left (1+{\mathrm e}^{t y} t^{2}\right ) y^{\prime } = 0 \]

1690

\[ {}\sec \relax (t ) \tan \relax (t )+\left (\sec ^{2}\relax (t )\right ) y+\left (\tan \relax (t )+2 y\right ) y^{\prime } = 0 \]

1691

\[ {}\frac {y^{2}}{2}-2 \,{\mathrm e}^{t} y+\left (-{\mathrm e}^{t}+y\right ) y^{\prime } = 0 \]

1692

\[ {}2 t y^{3}+3 t^{2} y^{2} y^{\prime } = 0 \]

1693

\[ {}2 t \cos \relax (y)+3 t^{2} y+\left (t^{3}-t^{2} \sin \relax (y)-y\right ) y^{\prime } = 0 \]

1694

\[ {}3 t^{2}+4 t y+\left (2 t^{2}+2 y\right ) y^{\prime } = 0 \]

1695

\[ {}2 t -2 \,{\mathrm e}^{t y} \sin \left (2 t \right )+{\mathrm e}^{t y} \cos \left (2 t \right ) y+\left (-3+{\mathrm e}^{t y} t \cos \left (2 t \right )\right ) y^{\prime } = 0 \]

1696

\[ {}3 t y+y^{2}+\left (t^{2}+t y\right ) y^{\prime } = 0 \]

1697

\[ {}y^{\prime } = y^{2}+\cos \left (t^{2}\right ) \]

1698

\[ {}y^{\prime } = 1+y+y^{2} \cos \relax (t ) \]

1699

\[ {}y^{\prime } = t +y^{2} \]

1700

\[ {}y^{\prime } = {\mathrm e}^{-t^{2}}+y^{2} \]