2.19 Problems 1801 to 1900

Table 2.19: Main lookup table

#

ODE

Mathematica result

Maple result

1801

\[ {}2 t y^{\prime \prime }+\left (t +1\right ) y^{\prime }-2 y = 0 \]

1802

\[ {}2 t^{2} y^{\prime \prime }-t y^{\prime }+\left (t +1\right ) y = 0 \]

1803

\[ {}4 t y^{\prime \prime }+3 y^{\prime }-3 y = 0 \]

1804

\[ {}2 t^{2} y^{\prime \prime }+\left (t^{2}-t \right ) y^{\prime }+y = 0 \]

1805

\[ {}t^{3} y^{\prime \prime }-t y^{\prime }-\left (t^{2}+\frac {5}{4}\right ) y = 0 \]

1806

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+t \right ) y^{\prime }-y = 0 \]

1807

\[ {}t y^{\prime \prime }-\left (t^{2}+2\right ) y^{\prime }+t y = 0 \]

1808

\[ {}t^{2} y^{\prime \prime }+\left (-t^{2}+3 t \right ) y^{\prime }-t y = 0 \]

1809

\[ {}t^{2} y^{\prime \prime }+t \left (t +1\right ) y^{\prime }-y = 0 \]

1810

\[ {}t y^{\prime \prime }-\left (4+t \right ) y^{\prime }+2 y = 0 \]

1811

\[ {}t^{2} y^{\prime \prime }+\left (t^{2}-3 t \right ) y^{\prime }+3 y = 0 \]

1812

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }-\left (t +1\right ) y = 0 \]

1813

\[ {}t y^{\prime \prime }+t y^{\prime }+2 y = 0 \]

1814

\[ {}t y^{\prime \prime }+\left (-t^{2}+1\right ) y^{\prime }+4 t y = 0 \]

1815

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+t^{2} y = 0 \]

1816

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-v^{2}\right ) y = 0 \]

1817

\[ {}t y^{\prime \prime }+\left (1-t \right ) y^{\prime }+\lambda y = 0 \]

1818

\[ {}2 \sin \relax (t ) y^{\prime \prime }+\left (1-t \right ) y^{\prime }-2 y = 0 \]

1819

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t +1\right ) y = 0 \]

1820

\[ {}t y^{\prime \prime }+y^{\prime }-4 y = 0 \]

1821

\[ {}t^{2} y^{\prime \prime }-t \left (t +1\right ) y^{\prime }+y = 0 \]

1822

\[ {}t^{2} y^{\prime \prime }+t y^{\prime }+\left (t^{2}-1\right ) y = 0 \]

1823

\[ {}t y^{\prime \prime }+3 y^{\prime }-3 y = 0 \]

1824

\[ {}[x_{1}^{\prime }\relax (t ) = 6 x_{1} \relax (t )-3 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1} \relax (t )+x_{2} \relax (t )] \]

1825

\[ {}[x_{1}^{\prime }\relax (t ) = -2 x_{1} \relax (t )+x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = -4 x_{1} \relax (t )+3 x_{2} \relax (t )] \]

1826

\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1} \relax (t )+2 x_{2} \relax (t )+4 x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1} \relax (t )+2 x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = 4 x_{1} \relax (t )+2 x_{2} \relax (t )+3 x_{3} \relax (t )] \]

1827

\[ {}[x_{1}^{\prime }\relax (t ) = 7 x_{1} \relax (t )-x_{2} \relax (t )+6 x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = -10 x_{1} \relax (t )+4 x_{2} \relax (t )-12 x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = -2 x_{1} \relax (t )+x_{2} \relax (t )-x_{3} \relax (t )] \]

1828

\[ {}[x_{1}^{\prime }\relax (t ) = -7 x_{1} \relax (t )+6 x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = 5 x_{2} \relax (t ), x_{3}^{\prime }\relax (t ) = 6 x_{1} \relax (t )+2 x_{3} \relax (t )] \]

1829

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )+2 x_{2} \relax (t )+3 x_{3} \relax (t )+6 x_{4} \relax (t ), x_{2}^{\prime }\relax (t ) = 3 x_{1} \relax (t )+6 x_{2} \relax (t )+9 x_{3} \relax (t )+18 x_{4} \relax (t ), x_{3}^{\prime }\relax (t ) = 5 x_{1} \relax (t )+10 x_{2} \relax (t )+15 x_{3} \relax (t )+30 x_{4} \relax (t ), x_{4}^{\prime }\relax (t ) = 7 x_{1} \relax (t )+14 x_{2} \relax (t )+21 x_{3} \relax (t )+42 x_{4} \relax (t )] \]

1830

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )+x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1} \relax (t )+x_{2} \relax (t )] \]

1831

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )-3 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = -2 x_{1} \relax (t )+2 x_{2} \relax (t )] \]

1832

\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1} \relax (t )+x_{2} \relax (t )-x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )+3 x_{2} \relax (t )-x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = 3 x_{1} \relax (t )+3 x_{2} \relax (t )-x_{3} \relax (t )] \]

1833

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )-x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )+2 x_{2} \relax (t )+x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = x_{1} \relax (t )+10 x_{2} \relax (t )+2 x_{3} \relax (t )] \]

1834

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )-3 x_{2} \relax (t )+2 x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = -x_{2} \relax (t ), x_{3}^{\prime }\relax (t ) = -x_{2} \relax (t )-2 x_{3} \relax (t )] \]

1835

\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1} \relax (t )+x_{2} \relax (t )-2 x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1} \relax (t )+2 x_{2} \relax (t )+x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = 4 x_{1} \relax (t )+x_{2} \relax (t )-3 x_{3} \relax (t )] \]

1836

\[ {}[x_{1}^{\prime }\relax (t ) = -3 x_{1} \relax (t )+2 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1} \relax (t )-x_{2} \relax (t )] \]

1837

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )-5 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-3 x_{2} \relax (t ), x_{3}^{\prime }\relax (t ) = x_{3} \relax (t )] \]

1838

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t ), x_{2}^{\prime }\relax (t ) = 3 x_{1} \relax (t )+x_{2} \relax (t )-2 x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = 2 x_{1} \relax (t )+2 x_{2} \relax (t )+x_{3} \relax (t )] \]

1839

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )+x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{2} \relax (t )-x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = -2 x_{1} \relax (t )-x_{3} \relax (t )] \]

1840

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )-x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = 5 x_{1} \relax (t )-3 x_{2} \relax (t )] \]

1841

\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1} \relax (t )-2 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = 4 x_{1} \relax (t )-x_{2} \relax (t )] \]

1842

\[ {}[x_{1}^{\prime }\relax (t ) = -3 x_{1} \relax (t )+2 x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-x_{2} \relax (t ), x_{3}^{\prime }\relax (t ) = -2 x_{1} \relax (t )-x_{2} \relax (t )] \]

1843

\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = -2 x_{1} \relax (t ), x_{3}^{\prime }\relax (t ) = -3 x_{4} \relax (t ), x_{4}^{\prime }\relax (t ) = 3 x_{3} \relax (t )] \]

1844

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )+x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{2} \relax (t ), x_{3}^{\prime }\relax (t ) = 2 x_{3} \relax (t )] \]

1845

\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1} \relax (t )+x_{2} \relax (t )+3 x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{2} \relax (t )-x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = 2 x_{3} \relax (t )] \]

1846

\[ {}[x_{1}^{\prime }\relax (t ) = -x_{2} \relax (t )+x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1} \relax (t )-3 x_{2} \relax (t )+x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = x_{1} \relax (t )-x_{2} \relax (t )-x_{3} \relax (t )] \]

1847

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )+x_{2} \relax (t )+x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1} \relax (t )+x_{2} \relax (t )-x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = -3 x_{1} \relax (t )+2 x_{2} \relax (t )+4 x_{3} \relax (t )] \]

1848

\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1} \relax (t )-x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = -x_{2} \relax (t ), x_{3}^{\prime }\relax (t ) = -2 x_{3} \relax (t )] \]

1849

\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1} \relax (t )-x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{2} \relax (t )+x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = 2 x_{3} \relax (t ), x_{4}^{\prime }\relax (t ) = -x_{3} \relax (t )+2 x_{4} \relax (t )] \]

1850

\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1} \relax (t )+x_{2} \relax (t )+2 x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1} \relax (t )+x_{2} \relax (t )+x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = -2 x_{1} \relax (t )+x_{2} \relax (t )+3 x_{3} \relax (t )] \]

1851

\[ {}[x_{1}^{\prime }\relax (t ) = -4 x_{1} \relax (t )-4 x_{2} \relax (t ), x_{2}^{\prime }\relax (t ) = 10 x_{1} \relax (t )+9 x_{2} \relax (t )+x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = -4 x_{1} \relax (t )-3 x_{2} \relax (t )+x_{3} \relax (t )] \]

1852

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )+2 x_{2} \relax (t )-3 x_{3} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )+x_{2} \relax (t )+2 x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = x_{1} \relax (t )-x_{2} \relax (t )+4 x_{3} \relax (t )] \]

1853

\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1} \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )+3 x_{2} \relax (t ), x_{3}^{\prime }\relax (t ) = 3 x_{3} \relax (t ), x_{4}^{\prime }\relax (t ) = 2 x_{3} \relax (t )+3 x_{4} \relax (t )] \]

1854

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t ), x_{2}^{\prime }\relax (t ) = 2 x_{1} \relax (t )+x_{2} \relax (t )-2 x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = 3 x_{1} \relax (t )+2 x_{2} \relax (t )+x_{3} \relax (t )+{\mathrm e}^{t} \cos \left (2 t \right )] \]

1855

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )+{\mathrm e}^{c t}, x_{2}^{\prime }\relax (t ) = 2 x_{1} \relax (t )+x_{2} \relax (t )-2 x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = 3 x_{1} \relax (t )+2 x_{2} \relax (t )+x_{3} \relax (t )] \]

1856

\[ {}[x_{1}^{\prime }\relax (t ) = 4 x_{1} \relax (t )+5 x_{2} \relax (t )+4 \,{\mathrm e}^{t} \cos \relax (t ), x_{2}^{\prime }\relax (t ) = -2 x_{1} \relax (t )-2 x_{2} \relax (t )] \]

1857

\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1} \relax (t )-4 x_{2} \relax (t )+{\mathrm e}^{t}, x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-x_{2} \relax (t )+{\mathrm e}^{t}] \]

1858

\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1} \relax (t )-5 x_{2} \relax (t )+\sin \relax (t ), x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )-2 x_{2} \relax (t )+\tan \relax (t )] \]

1859

\[ {}[x_{1}^{\prime }\relax (t ) = x_{2} \relax (t )+f_{1}\relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1} \relax (t )+f_{2}\relax (t )] \]

1860

\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1} \relax (t )+x_{3} \relax (t )+{\mathrm e}^{2 t}, x_{2}^{\prime }\relax (t ) = 2 x_{2} \relax (t ), x_{3}^{\prime }\relax (t ) = x_{2} \relax (t )+3 x_{3} \relax (t )+{\mathrm e}^{2 t}] \]

1861

\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1} \relax (t )-x_{2} \relax (t )-2 x_{3} \relax (t )+{\mathrm e}^{t}, x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )+x_{2} \relax (t )+x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = 2 x_{1} \relax (t )+x_{2} \relax (t )+3 x_{3} \relax (t )] \]

1862

\[ {}[x_{1}^{\prime }\relax (t ) = 2 x_{1} \relax (t )+x_{2} \relax (t )+{\mathrm e}^{3 t}, x_{2}^{\prime }\relax (t ) = 3 x_{1} \relax (t )-2 x_{2} \relax (t )+{\mathrm e}^{3 t}] \]

1863

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )-x_{2} \relax (t )-t^{2}, x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )+3 x_{2} \relax (t )+2 t] \]

1864

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )+3 x_{2} \relax (t )+2 x_{3} \relax (t )+\sin \relax (t ), x_{2}^{\prime }\relax (t ) = -x_{1} \relax (t )+2 x_{2} \relax (t )+x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = 4 x_{1} \relax (t )-x_{2} \relax (t )-x_{3} \relax (t )] \]

1865

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )+2 x_{2} \relax (t )-3 x_{3} \relax (t )+{\mathrm e}^{t}, x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )+x_{2} \relax (t )+2 x_{3} \relax (t ), x_{3}^{\prime }\relax (t ) = x_{1} \relax (t )-x_{2} \relax (t )+4 x_{3} \relax (t )-{\mathrm e}^{t}] \]

1866

\[ {}[x_{1}^{\prime }\relax (t ) = -x_{1} \relax (t )-x_{2} \relax (t )+1, x_{2}^{\prime }\relax (t ) = -4 x_{2} \relax (t )-x_{3} \relax (t )+t, x_{3}^{\prime }\relax (t ) = 5 x_{2} \relax (t )+{\mathrm e}^{t}] \]

1867

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )+x_{2} \relax (t )-x_{3} \relax (t )+{\mathrm e}^{2 t}, x_{2}^{\prime }\relax (t ) = 2 x_{1} \relax (t )+3 x_{2} \relax (t )-4 x_{3} \relax (t )+2 \,{\mathrm e}^{2 t}, x_{3}^{\prime }\relax (t ) = 4 x_{1} \relax (t )+x_{2} \relax (t )-4 x_{3} \relax (t )+{\mathrm e}^{2 t}] \]

1868

\[ {}[x_{1}^{\prime }\relax (t ) = x_{1} \relax (t )-x_{2} \relax (t )-x_{3} \relax (t )+{\mathrm e}^{3 t}, x_{2}^{\prime }\relax (t ) = x_{1} \relax (t )+3 x_{2} \relax (t )+x_{3} \relax (t )-{\mathrm e}^{3 t}, x_{3}^{\prime }\relax (t ) = -3 x_{1} \relax (t )+x_{2} \relax (t )-x_{3} \relax (t )-{\mathrm e}^{3 t}] \]

1869

\[ {}[x_{1}^{\prime }\relax (t ) = 3 x_{1} \relax (t )+2 x_{2} \relax (t )+4 x_{3} \relax (t )+2 \,{\mathrm e}^{8 t}, x_{2}^{\prime }\relax (t ) = 2 x_{1} \relax (t )+2 x_{3} \relax (t )+{\mathrm e}^{8 t}, x_{3}^{\prime }\relax (t ) = 4 x_{1} \relax (t )+2 x_{2} \relax (t )+3 x_{3} \relax (t )+2 \,{\mathrm e}^{8 t}] \]

1870

\[ {}x y+\left (x^{2}+1\right ) y^{\prime } = 0 \]

1871

\[ {}x y^{2}+x +\left (y-x^{2} y\right ) y^{\prime } = 0 \]

1872

\[ {}1+y^{2}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

1873

\[ {}y+x y^{\prime } = 0 \]

1874

\[ {}y^{\prime } = 2 x y \]

1875

\[ {}x y^{2}+x +\left (x^{2} y-y\right ) y^{\prime } = 0 \]

1876

\[ {}\sqrt {-x^{2}+1}+\sqrt {1-y^{2}}\, y^{\prime } = 0 \]

1877

\[ {}\left (1+x \right ) y^{\prime }-1+y = 0 \]

1878

\[ {}y^{\prime } \tan \relax (x )-y = 1 \]

1879

\[ {}y+3+\cot \relax (x ) y^{\prime } = 0 \]

1880

\[ {}y^{\prime } = \frac {x}{y} \]

1881

\[ {}x^{\prime } = 1-\sin \left (2 t \right ) \]

1882

\[ {}y+x y^{\prime } = y^{2} \]

1883

\[ {}\sin \relax (x ) \left (\cos ^{2}\relax (y)\right )+\left (\cos ^{2}\relax (x )\right ) y^{\prime } = 0 \]

1884

\[ {}\sec \relax (x ) \left (\cos ^{2}\relax (y)\right ) = \cos \relax (x ) \sin \relax (y) y^{\prime } \]

1885

\[ {}y+x y^{\prime } = x y \left (y^{\prime }-1\right ) \]

1886

\[ {}x y+\sqrt {x^{2}+1}\, y^{\prime } = 0 \]

1887

\[ {}y = x y+x^{2} y^{\prime } \]

1888

\[ {}\tan \relax (x ) \left (\sin ^{2}\relax (x )\right )+\left (\cos ^{2}\relax (x )\right ) \cot \relax (y) y^{\prime } = 0 \]

1889

\[ {}y^{2}+y y^{\prime }+x^{2} y y^{\prime }-1 = 0 \]

1890

\[ {}y^{\prime } = \frac {y}{x} \]

1891

\[ {}x y^{\prime }+2 y = 0 \]

1892

\[ {}\sin \relax (x ) \cos \relax (y)+\cos \relax (x ) \sin \relax (y) y^{\prime } = 0 \]

1893

\[ {}x^{2} y^{\prime }+y^{2} = 0 \]

1894

\[ {}y^{\prime } = {\mathrm e}^{y} \]

1895

\[ {}{\mathrm e}^{y} \left (y^{\prime }+1\right ) = 1 \]

1896

\[ {}1+y^{2} = \frac {y^{\prime }}{x^{3} \left (-1+x \right )} \]

1897

\[ {}x^{2}+3 x y^{\prime } = y^{3}+2 y \]

1898

\[ {}\left (x^{2}+x +1\right ) y^{\prime } = y^{2}+2 y+5 \]

1899

\[ {}\left (x^{2}-2 x -8\right ) y^{\prime } = y^{2}+y-2 \]

1900

\[ {}x +y = x y^{\prime } \]