# |
ODE |
Mathematica result |
Maple result |
\[ {}\left (x +y\right ) y^{\prime }+x = y \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {x y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x -y}{x +4 y} \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = \sqrt {x^{2}-y^{2}} \] |
✓ |
✓ |
|
\[ {}x +y y^{\prime } = 2 y \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y+\sqrt {y^{2}-x^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2}+y^{2} = x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (x y-x^{2}\right ) y^{\prime }-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y+x y^{\prime } = 2 \sqrt {x y} \] |
✓ |
✓ |
|
\[ {}x +y+\left (x -y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y \left (x^{2}-x y+y^{2}\right )+x y^{\prime } \left (x^{2}+x y+y^{2}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-y-x \sin \left (\frac {y}{x}\right ) = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+\cosh \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}x^{2}+y^{2} = 2 x y y^{\prime } \] |
✓ |
✓ |
|
\[ {}\left (\frac {x}{y}+\frac {y}{x}\right ) y^{\prime }+1 = 0 \] |
✓ |
✓ |
|
\[ {}x \,{\mathrm e}^{\frac {y}{x}}+y = x y^{\prime } \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y}{x -y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+\tan \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}\left (3 x y-2 x^{2}\right ) y^{\prime } = 2 y^{2}-x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x -k \sqrt {x^{2}+y^{2}}} \] |
✓ |
✓ |
|
\[ {}y^{2} \left (y y^{\prime }-x \right )+x^{3} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {y}{x}+\tanh \left (\frac {y}{x}\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 \,{\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2}{\sqrt {-x^{2}+1}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \,{\mathrm e}^{x^{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \arcsin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x^{2} y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -x \,{\mathrm e}^{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \relax (y) = x^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = \sqrt {1-y^{2}} \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{2}-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (y^{\prime }\right )^{2}-3 y^{\prime }+2 = 0 \] |
✓ |
✓ |
|
\[ {}\left (x^{2}+1\right ) y^{\prime } = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \relax (x ) = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t^{2}+3 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin \left (3 t \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin ^{2}\relax (t ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {t}{t^{2}+4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \ln \relax (t ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {t}{\sqrt {t}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y-4 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {{\mathrm e}^{t}}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t \,{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin ^{2}\relax (t ) \] | ✓ | ✓ |
|
\[ {}y^{\prime } = 8 \,{\mathrm e}^{4 t}+t \] | ✓ | ✓ |
|
\[ {}y^{\prime } = \frac {y}{t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {t}{y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{2}-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y-1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y^{3}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 1-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (t^{2}+1\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y+{\mathrm e}^{-3 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y+{\mathrm e}^{2 t} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = t -y \] |
✓ |
✓ |
|
\[ {}t y^{\prime }+2 y = \sin \relax (t ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \relax (t ) y+\sec \relax (t ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 t y}{t^{2}+1}+t +1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \relax (t ) y+\sec ^{3}\relax (t ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 2 y \] |
✓ |
✓ |
|
\[ {}t y^{\prime } = y+t^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\tan \relax (t ) y+\sec \relax (t ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{t +1} \] |
✓ |
✓ |
|
\[ {}t y^{\prime } = -y+t^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+4 \tan \left (2 t \right ) y = \tan \left (2 t \right ) \] |
✓ |
✓ |
|
\[ {}t \ln \relax (t ) y^{\prime } = \ln \relax (t ) t -y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{-t^{2}+1}+3 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\cot \relax (t ) y+6 \left (\cos ^{2}\relax (t )\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-x y^{3} = 0 \] |
✓ |
✓ |
|
\[ {}\frac {y^{\prime }}{\tan \relax (x )}-\frac {y}{x^{2}+1} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }+x y^{2} = 4 y^{2} \] |
✓ |
✓ |
|
\[ {}y \left (2 x^{2} y^{2}+1\right ) y^{\prime }+x \left (y^{4}+1\right ) = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime }+3 x +y = 0 \] |
✓ |
✓ |
|
\[ {}\left (\cos ^{2}\relax (x )+y \sin \left (2 x \right )\right ) y^{\prime }+y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}\left (-x^{2}+1\right ) y^{\prime }+4 x y = \left (-x^{2}+1\right )^{\frac {3}{2}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \cot \relax (x )+\frac {1}{\sin \relax (x )} = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +y^{3}\right ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {2 x^{2}+y^{2}+x}{x y} \] |
✓ |
✓ |
|
\[ {}\left (-x +y\right ) y^{\prime }+2 x +3 y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {1}{x +2 y+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = -\frac {x +y}{3 x +3 y-4} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \tan \relax (x ) \cos \relax (y) \left (\cos \relax (y)+\sin \relax (y)\right ) \] |
✓ |
✓ |
|
\[ {}x \left (1-2 x^{2} y\right ) y^{\prime }+y = 3 x^{2} y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+\frac {x y}{a^{2}+x^{2}} = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {4 y^{2}}{x^{2}}-y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y}{x} = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \tan \relax (x ) = 1 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-\frac {y^{2}}{x^{2}} = {\frac {1}{4}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \relax (x )+2 y \cos \relax (x ) = 1 \] |
✓ |
✓ |
|
\[ {}\left (5 x +y-7\right ) y^{\prime } = 3+3 x +3 y \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y-\frac {y^{2}}{x^{\frac {3}{2}}} = 0 \] |
✓ |
✓ |
|