2.26 Problems 2501 to 2600

Table 2.26: Main lookup table

#

ODE

Mathematica result

Maple result

2501

\[ {}y^{\prime }+y = 0 \]

2502

\[ {}y^{\prime }+y = x^{2}+2 \]

2503

\[ {}y^{\prime }-y \tan \relax (x ) = x \]

2504

\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \]

2505

\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{2 x^{2}} \]

2506

\[ {}x y^{\prime } = x +y \]

2507

\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \]

2508

\[ {}y^{\prime } = {\mathrm e}^{x} \sin \relax (x ) \]

2509

\[ {}y^{\prime }-3 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x} \]

2510

\[ {}y^{\prime } = x +\frac {1}{x} \]

2511

\[ {}x y^{\prime }+2 y = \left (2+3 x \right ) {\mathrm e}^{3 x} \]

2512

\[ {}2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }-3 \cos \left (3 x \right ) \cos \left (2 y\right ) = 0 \]

2513

\[ {}x y y^{\prime } = \left (1+x \right ) \left (y+1\right ) \]

2514

\[ {}y^{\prime } = \frac {2 x -y}{2 x +y} \]

2515

\[ {}y^{\prime } = \frac {3 x -y+1}{3 y-x +5} \]

2516

\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \]

2517

\[ {}x +\left (2-x +2 y\right ) y^{\prime } = x y \left (y^{\prime }-1\right ) \]

2518

\[ {}\cos \relax (x ) y^{\prime }+y \sin \relax (x ) = 1 \]

2519

\[ {}\left (x +y^{2}\right ) y^{\prime }+y-x^{2} = 0 \]

2520

\[ {}y y^{\prime } = x \]

2521

\[ {}y^{\prime }-y = x^{3} \]

2522

\[ {}y^{\prime }+y \cot \relax (x ) = x \]

2523

\[ {}y^{\prime }+y \cot \relax (x ) = \tan \relax (x ) \]

2524

\[ {}y^{\prime }+y \tan \relax (x ) = \cot \relax (x ) \]

2525

\[ {}y^{\prime }+y \ln \relax (x ) = x^{-x} \]

2526

\[ {}x y^{\prime }+y = x \]

2527

\[ {}-y+x y^{\prime } = x^{3} \]

2528

\[ {}x y^{\prime }+n y = x^{n} \]

2529

\[ {}x y^{\prime }-n y = x^{n} \]

2530

\[ {}\left (x^{3}+x \right ) y^{\prime }+y = x \]

2531

\[ {}\cot \relax (x ) y^{\prime }+y = x \]

2532

\[ {}\cot \relax (x ) y^{\prime }+y = \tan \relax (x ) \]

2533

\[ {}\tan \relax (x ) y^{\prime }+y = \cot \relax (x ) \]

2534

\[ {}\tan \relax (x ) y^{\prime } = y-\cos \relax (x ) \]

2535

\[ {}y^{\prime }+y \cos \relax (x ) = \sin \left (2 x \right ) \]

2536

\[ {}\cos \relax (x ) y^{\prime }+y = \sin \left (2 x \right ) \]

2537

\[ {}y^{\prime }+y \sin \relax (x ) = \sin \left (2 x \right ) \]

2538

\[ {}y^{\prime } \sin \relax (x )+y = \sin \left (2 x \right ) \]

2539

\[ {}\sqrt {x^{2}+1}\, y^{\prime }+y = 2 x \]

2540

\[ {}\sqrt {x^{2}+1}\, y^{\prime }-y = 2 \sqrt {x^{2}+1} \]

2541

\[ {}\sqrt {\left (x +a \right ) \left (x +b \right )}\, \left (2 y^{\prime }-3\right )+y = 0 \]

2542

\[ {}\sqrt {\left (x +a \right ) \left (x +b \right )}\, y^{\prime }+y = \sqrt {x +a}-\sqrt {x +b} \]

2543

\[ {}3 y^{2} y^{\prime } = 2 x -1 \]

2544

\[ {}y^{\prime } = 6 x y^{2} \]

2545

\[ {}y^{\prime } = {\mathrm e}^{y} \sin \relax (x ) \]

2546

\[ {}y^{\prime } = {\mathrm e}^{x -y} \]

2547

\[ {}y^{\prime } = x \sec \relax (y) \]

2548

\[ {}y^{\prime } = 3 \left (\cos ^{2}\relax (y)\right ) \]

2549

\[ {}x y^{\prime } = y \]

2550

\[ {}\left (1-x \right ) y^{\prime } = y \]

2551

\[ {}y^{\prime } = \frac {4 x y}{x^{2}+1} \]

2552

\[ {}y^{\prime } = \frac {2 y}{x^{2}-1} \]

2553

\[ {}x^{2} y^{\prime }-y^{2} = 0 \]

2554

\[ {}y^{\prime }+2 x y = 0 \]

2555

\[ {}\cot \relax (x ) y^{\prime } = y \]

2556

\[ {}y^{\prime } = x \,{\mathrm e}^{-2 y} \]

2557

\[ {}y^{\prime }-2 x y = 2 x \]

2558

\[ {}x y^{\prime } = x y+y \]

2559

\[ {}\left (x^{3}+1\right ) y^{\prime } = 3 x^{2} \tan \relax (x ) \]

2560

\[ {}x \cos \relax (y) y^{\prime } = 1+\sin \relax (y) \]

2561

\[ {}x y^{\prime } = 2 y \left (y-1\right ) \]

2562

\[ {}2 x y^{\prime } = 1-y^{2} \]

2563

\[ {}\left (1-x \right ) y^{\prime } = x y \]

2564

\[ {}\left (x^{2}-1\right ) y^{\prime } = \left (x^{2}+1\right ) y \]

2565

\[ {}y^{\prime } = {\mathrm e}^{x} \left (1+y^{2}\right ) \]

2566

\[ {}{\mathrm e}^{y} y^{\prime }+2 x = 2 x \,{\mathrm e}^{y} \]

2567

\[ {}y \,{\mathrm e}^{2 x} y^{\prime }+2 x = 0 \]

2568

\[ {}x y y^{\prime } = \sqrt {y^{2}-9} \]

2569

\[ {}\left (x +y-1\right ) y^{\prime } = x -y+1 \]

2570

\[ {}x y y^{\prime } = 2 x^{2}-y^{2} \]

2571

\[ {}x^{2}-y^{2}+x y y^{\prime } = 0 \]

2572

\[ {}x^{2} y^{\prime }-2 x y-2 y^{2} = 0 \]

2573

\[ {}x^{2} y^{\prime } = 3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y \]

2574

\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \]

2575

\[ {}x y^{\prime } = y+2 \,{\mathrm e}^{-\frac {y}{x}} \]

2576

\[ {}y^{\prime } = \left (x +y\right )^{2} \]

2577

\[ {}y^{\prime } = \sin ^{2}\left (x -y+1\right ) \]

2578

\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \]

2579

\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \]

2580

\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \]

2581

\[ {}\sin \relax (x ) \tan \relax (y)+1+\cos \relax (x ) \left (\sec ^{2}\relax (y)\right ) y^{\prime } = 0 \]

2582

\[ {}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \]

2583

\[ {}2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime } \]

2584

\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \]

2585

\[ {}\cos \relax (x ) \left (\cos ^{2}\relax (y)\right )+2 \sin \relax (x ) \sin \relax (y) \cos \relax (y) y^{\prime } = 0 \]

2586

\[ {}\left (\sin \relax (x ) \sin \relax (y)-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \relax (x ) \cos \relax (y) \]

2587

\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \]

2588

\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \]

2589

\[ {}2 x y^{3}+y \cos \relax (x )+\left (3 x^{2} y^{2}+\sin \relax (x )\right ) y^{\prime } = 0 \]

2590

\[ {}1 = \frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} \]

2591

\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \]

2592

\[ {}x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \]

2593

\[ {}\left (x +3 x^{3} y^{4}\right ) y^{\prime }+y = 0 \]

2594

\[ {}\left (x -1-y^{2}\right ) y^{\prime }-y = 0 \]

2595

\[ {}y-\left (x +x y^{3}\right ) y^{\prime } = 0 \]

2596

\[ {}x y^{\prime } = x^{5}+x^{3} y^{2}+y \]

2597

\[ {}\left (x +y\right ) y^{\prime } = -x +y \]

2598

\[ {}x y^{\prime } = y+x^{2}+9 y^{2} \]

2599

\[ {}x y^{\prime }-3 y = x^{4} \]

2600

\[ {}y^{\prime }+y = \frac {1}{{\mathrm e}^{2 x}+1} \]