# |
ODE |
Mathematica result |
Maple result |
\[ {}y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = x^{2}+2 \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y \tan \relax (x ) = x \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x -2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x^{2}+y^{2}}{2 x^{2}} \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x +y \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{-y}+\left (x^{2}+1\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x} \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }-3 y = {\mathrm e}^{3 x}+{\mathrm e}^{-3 x} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x +\frac {1}{x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+2 y = \left (2+3 x \right ) {\mathrm e}^{3 x} \] |
✓ |
✓ |
|
\[ {}2 \sin \left (3 x \right ) \sin \left (2 y\right ) y^{\prime }-3 \cos \left (3 x \right ) \cos \left (2 y\right ) = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = \left (1+x \right ) \left (y+1\right ) \] |
✗ |
✓ |
|
\[ {}y^{\prime } = \frac {2 x -y}{2 x +y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {3 x -y+1}{3 y-x +5} \] |
✓ |
✓ |
|
\[ {}3 y-7 x +7+\left (7 y-3 x +3\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x +\left (2-x +2 y\right ) y^{\prime } = x y \left (y^{\prime }-1\right ) \] |
✓ |
✓ |
|
\[ {}\cos \relax (x ) y^{\prime }+y \sin \relax (x ) = 1 \] |
✓ |
✓ |
|
\[ {}\left (x +y^{2}\right ) y^{\prime }+y-x^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y y^{\prime } = x \] |
✓ |
✓ |
|
\[ {}y^{\prime }-y = x^{3} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cot \relax (x ) = x \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cot \relax (x ) = \tan \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \tan \relax (x ) = \cot \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \ln \relax (x ) = x^{-x} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+y = x \] |
✓ |
✓ |
|
\[ {}-y+x y^{\prime } = x^{3} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }+n y = x^{n} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-n y = x^{n} \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+x \right ) y^{\prime }+y = x \] |
✓ |
✓ |
|
\[ {}\cot \relax (x ) y^{\prime }+y = x \] |
✓ |
✓ |
|
\[ {}\cot \relax (x ) y^{\prime }+y = \tan \relax (x ) \] |
✓ |
✓ |
|
\[ {}\tan \relax (x ) y^{\prime }+y = \cot \relax (x ) \] |
✓ |
✓ |
|
\[ {}\tan \relax (x ) y^{\prime } = y-\cos \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \cos \relax (x ) = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}\cos \relax (x ) y^{\prime }+y = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y \sin \relax (x ) = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } \sin \relax (x )+y = \sin \left (2 x \right ) \] |
✓ |
✓ |
|
\[ {}\sqrt {x^{2}+1}\, y^{\prime }+y = 2 x \] |
✓ |
✓ |
|
\[ {}\sqrt {x^{2}+1}\, y^{\prime }-y = 2 \sqrt {x^{2}+1} \] |
✓ |
✓ |
|
\[ {}\sqrt {\left (x +a \right ) \left (x +b \right )}\, \left (2 y^{\prime }-3\right )+y = 0 \] |
✓ |
✓ |
|
\[ {}\sqrt {\left (x +a \right ) \left (x +b \right )}\, y^{\prime }+y = \sqrt {x +a}-\sqrt {x +b} \] |
✓ |
✓ |
|
\[ {}3 y^{2} y^{\prime } = 2 x -1 \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 6 x y^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{y} \sin \relax (x ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x -y} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \sec \relax (y) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = 3 \left (\cos ^{2}\relax (y)\right ) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y \] | ✓ | ✓ |
|
\[ {}\left (1-x \right ) y^{\prime } = y \] | ✓ | ✓ |
|
\[ {}y^{\prime } = \frac {4 x y}{x^{2}+1} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {2 y}{x^{2}-1} \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }-y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}y^{\prime }+2 x y = 0 \] |
✓ |
✓ |
|
\[ {}\cot \relax (x ) y^{\prime } = y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = x \,{\mathrm e}^{-2 y} \] |
✓ |
✓ |
|
\[ {}y^{\prime }-2 x y = 2 x \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x y+y \] |
✓ |
✓ |
|
\[ {}\left (x^{3}+1\right ) y^{\prime } = 3 x^{2} \tan \relax (x ) \] |
✓ |
✓ |
|
\[ {}x \cos \relax (y) y^{\prime } = 1+\sin \relax (y) \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = 2 y \left (y-1\right ) \] |
✓ |
✓ |
|
\[ {}2 x y^{\prime } = 1-y^{2} \] |
✓ |
✓ |
|
\[ {}\left (1-x \right ) y^{\prime } = x y \] |
✓ |
✓ |
|
\[ {}\left (x^{2}-1\right ) y^{\prime } = \left (x^{2}+1\right ) y \] |
✓ |
✓ |
|
\[ {}y^{\prime } = {\mathrm e}^{x} \left (1+y^{2}\right ) \] |
✓ |
✓ |
|
\[ {}{\mathrm e}^{y} y^{\prime }+2 x = 2 x \,{\mathrm e}^{y} \] |
✓ |
✓ |
|
\[ {}y \,{\mathrm e}^{2 x} y^{\prime }+2 x = 0 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = \sqrt {y^{2}-9} \] |
✓ |
✓ |
|
\[ {}\left (x +y-1\right ) y^{\prime } = x -y+1 \] |
✓ |
✓ |
|
\[ {}x y y^{\prime } = 2 x^{2}-y^{2} \] |
✓ |
✓ |
|
\[ {}x^{2}-y^{2}+x y y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime }-2 x y-2 y^{2} = 0 \] |
✓ |
✓ |
|
\[ {}x^{2} y^{\prime } = 3 \left (x^{2}+y^{2}\right ) \arctan \left (\frac {y}{x}\right )+x y \] |
✓ |
✓ |
|
\[ {}x \sin \left (\frac {y}{x}\right ) y^{\prime } = y \sin \left (\frac {y}{x}\right )+x \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y+2 \,{\mathrm e}^{-\frac {y}{x}} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \left (x +y\right )^{2} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \sin ^{2}\left (x -y+1\right ) \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y+4}{x -y-6} \] |
✓ |
✓ |
|
\[ {}y^{\prime } = \frac {x +y+4}{x +y-6} \] |
✓ |
✓ |
|
\[ {}\left (x +\frac {2}{y}\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\sin \relax (x ) \tan \relax (y)+1+\cos \relax (x ) \left (\sec ^{2}\relax (y)\right ) y^{\prime } = 0 \] |
✓ |
✗ |
|
\[ {}y-x^{3}+\left (x +y^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 y^{2}-4 x +5 = \left (4-2 y+4 x y\right ) y^{\prime } \] |
✗ |
✗ |
|
\[ {}y+y \cos \left (x y\right )+\left (x +x \cos \left (x y\right )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\cos \relax (x ) \left (\cos ^{2}\relax (y)\right )+2 \sin \relax (x ) \sin \relax (y) \cos \relax (y) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (\sin \relax (x ) \sin \relax (y)-x \,{\mathrm e}^{y}\right ) y^{\prime } = {\mathrm e}^{y}+\cos \relax (x ) \cos \relax (y) \] |
✓ |
✓ |
|
\[ {}-\frac {\sin \left (\frac {x}{y}\right )}{y}+\frac {x \sin \left (\frac {x}{y}\right ) y^{\prime }}{y^{2}} = 0 \] |
✓ |
✓ |
|
\[ {}1+y+\left (1-x \right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}2 x y^{3}+y \cos \relax (x )+\left (3 x^{2} y^{2}+\sin \relax (x )\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}1 = \frac {y}{1-x^{2} y^{2}}+\frac {x y^{\prime }}{1-x^{2} y^{2}} \] |
✓ |
✓ |
|
\[ {}\left (3 x^{2}-y^{2}\right ) y^{\prime }-2 x y = 0 \] |
✓ |
✓ |
|
\[ {}x y-1+\left (x^{2}-x y\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}\left (x +3 x^{3} y^{4}\right ) y^{\prime }+y = 0 \] |
✓ |
✓ |
|
\[ {}\left (x -1-y^{2}\right ) y^{\prime }-y = 0 \] |
✓ |
✓ |
|
\[ {}y-\left (x +x y^{3}\right ) y^{\prime } = 0 \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = x^{5}+x^{3} y^{2}+y \] |
✓ |
✓ |
|
\[ {}\left (x +y\right ) y^{\prime } = -x +y \] |
✓ |
✓ |
|
\[ {}x y^{\prime } = y+x^{2}+9 y^{2} \] |
✓ |
✓ |
|
\[ {}x y^{\prime }-3 y = x^{4} \] |
✓ |
✓ |
|
\[ {}y^{\prime }+y = \frac {1}{{\mathrm e}^{2 x}+1} \] |
✓ |
✓ |
|