2.30 Problems 2901 to 3000

Table 2.30: Main lookup table

#

ODE

Mathematica result

Maple result

2901

\[ {}x y^{\prime } = 1+x +a y \]

2902

\[ {}x y^{\prime } = a x +b y \]

2903

\[ {}x y^{\prime } = a \,x^{2}+b y \]

2904

\[ {}x y^{\prime } = a +b \,x^{n}+c y \]

2905

\[ {}x y^{\prime }+2+\left (3-x \right ) y = 0 \]

2906

\[ {}x y^{\prime }+x +\left (a x +2\right ) y = 0 \]

2907

\[ {}x y^{\prime }+\left (b x +a \right ) y = 0 \]

2908

\[ {}x y^{\prime } = x^{3}+\left (-2 x^{2}+1\right ) y \]

2909

\[ {}x y^{\prime } = a x -\left (-b \,x^{2}+1\right ) y \]

2910

\[ {}x y^{\prime }+x +\left (-a \,x^{2}+2\right ) y = 0 \]

2911

\[ {}x y^{\prime }+x^{2}+y^{2} = 0 \]

2912

\[ {}x y^{\prime } = x^{2}+y \left (y+1\right ) \]

2913

\[ {}x y^{\prime }-y+y^{2} = x^{\frac {2}{3}} \]

2914

\[ {}x y^{\prime } = a +b y^{2} \]

2915

\[ {}x y^{\prime } = a \,x^{2}+y+b y^{2} \]

2916

\[ {}x y^{\prime } = a \,x^{2 n}+\left (n +b y\right ) y \]

2917

\[ {}x y^{\prime } = a \,x^{n}+b y+c y^{2} \]

2918

\[ {}x y^{\prime } = k +a \,x^{n}+b y+c y^{2} \]

2919

\[ {}x y^{\prime }+a +x y^{2} = 0 \]

2920

\[ {}x y^{\prime }+\left (1-x y\right ) y = 0 \]

2921

\[ {}x y^{\prime } = \left (1-x y\right ) y \]

2922

\[ {}x y^{\prime } = \left (1+x y\right ) y \]

2923

\[ {}x y^{\prime } = a \,x^{3} \left (1-x y\right ) y \]

2924

\[ {}x y^{\prime } = x^{3}+\left (2 x^{2}+1\right ) y+x y^{2} \]

2925

\[ {}x y^{\prime } = y \left (2 x y+1\right ) \]

2926

\[ {}x y^{\prime }+b x +\left (2+y a x \right ) y = 0 \]

2927

\[ {}x y^{\prime }+\mathit {a0} +\mathit {a1} x +\left (\mathit {a2} +\mathit {a3} x y\right ) y = 0 \]

2928

\[ {}x y^{\prime }+a \,x^{2} y^{2}+2 y = b \]

2929

\[ {}x y^{\prime }+x^{m}+\frac {\left (n -m \right ) y}{2}+x^{n} y^{2} = 0 \]

2930

\[ {}x y^{\prime }+\left (a +b \,x^{n} y\right ) y = 0 \]

2931

\[ {}x y^{\prime } = a \,x^{m}-b y-c \,x^{n} y^{2} \]

2932

\[ {}x y^{\prime } = 2 x -y+a \,x^{n} \left (x -y\right )^{2} \]

2933

\[ {}x y^{\prime }+\left (1-a y \ln \relax (x )\right ) y = 0 \]

2934

\[ {}x y^{\prime } = y+\left (x^{2}-y^{2}\right ) f \relax (x ) \]

2935

\[ {}x y^{\prime } = y \left (1+y^{2}\right ) \]

2936

\[ {}x y^{\prime }+y \left (1-x y^{2}\right ) = 0 \]

2937

\[ {}x y^{\prime }+y = a \left (x^{2}+1\right ) y^{3} \]

2938

\[ {}x y^{\prime } = a y+b \left (x^{2}+1\right ) y^{3} \]

2939

\[ {}x y^{\prime }+2 y = a \,x^{2 k} y^{k} \]

2940

\[ {}x y^{\prime } = 4 y-4 \sqrt {y} \]

2941

\[ {}x y^{\prime }+2 y = \sqrt {1+y^{2}} \]

2942

\[ {}x y^{\prime } = y+\sqrt {x^{2}+y^{2}} \]

2943

\[ {}x y^{\prime } = y+\sqrt {x^{2}-y^{2}} \]

2944

\[ {}x y^{\prime } = y+x \sqrt {x^{2}+y^{2}} \]

2945

\[ {}x y^{\prime } = y-x \left (x -y\right ) \sqrt {x^{2}+y^{2}} \]

2946

\[ {}x y^{\prime } = y+a \sqrt {y^{2}+b^{2} x^{2}} \]

2947

\[ {}x y^{\prime }+\left (\sin \relax (y)-3 x^{2} \cos \relax (y)\right ) \cos \relax (y) = 0 \]

2948

\[ {}x y^{\prime }+x -y+x \cos \left (\frac {y}{x}\right ) = 0 \]

2949

\[ {}x y^{\prime } = y-x \left (\cos ^{2}\left (\frac {y}{x}\right )\right ) \]

2950

\[ {}x y^{\prime } = \left (-2 x^{2}+1\right ) \left (\cot ^{2}\relax (y)\right ) \]

2951

\[ {}x y^{\prime } = y-\left (\cot ^{2}\relax (y)\right ) \]

2952

\[ {}x y^{\prime }+y+2 x \sec \left (x y\right ) = 0 \]

2953

\[ {}x y^{\prime }-y+x \sec \left (\frac {y}{x}\right ) = 0 \]

2954

\[ {}x y^{\prime } = y+x \left (\sec ^{2}\left (\frac {y}{x}\right )\right ) \]

2955

\[ {}x y^{\prime } = \sin \left (x -y\right ) \]

2956

\[ {}x y^{\prime } = y+x \sin \left (\frac {y}{x}\right ) \]

2957

\[ {}x y^{\prime }+\tan \relax (y) = 0 \]

2958

\[ {}x y^{\prime }+x +\tan \left (x +y\right ) = 0 \]

2959

\[ {}x y^{\prime } = y-x \tan \left (\frac {y}{x}\right ) \]

2960

\[ {}x y^{\prime } = \left (1+y^{2}\right ) \left (x^{2}+\arctan \relax (y)\right ) \]

2961

\[ {}x y^{\prime } = y+x \,{\mathrm e}^{\frac {y}{x}} \]

2962

\[ {}x y^{\prime } = x +y+x \,{\mathrm e}^{\frac {y}{x}} \]

2963

\[ {}x y^{\prime } = y \ln \relax (y) \]

2964

\[ {}x y^{\prime } = \left (1+\ln \relax (x )-\ln \relax (y)\right ) y \]

2965

\[ {}x y^{\prime }+\left (1-\ln \relax (x )-\ln \relax (y)\right ) y = 0 \]

2966

\[ {}x y^{\prime } = y-2 x \tanh \left (\frac {y}{x}\right ) \]

2967

\[ {}x y^{\prime }+n y = f \relax (x ) g \left (x^{n} y\right ) \]

2968

\[ {}x y^{\prime } = y f \left (x^{m} y^{n}\right ) \]

2969

\[ {}\left (1+x \right ) y^{\prime } = x^{3} \left (4+3 x \right )+y \]

2970

\[ {}\left (1+x \right ) y^{\prime } = \left (1+x \right )^{4}+2 y \]

2971

\[ {}\left (1+x \right ) y^{\prime } = {\mathrm e}^{x} \left (1+x \right )^{n +1}+n y \]

2972

\[ {}\left (1+x \right ) y^{\prime } = a y+b x y^{2} \]

2973

\[ {}\left (1+x \right ) y^{\prime }+y+\left (1+x \right )^{4} y^{3} = 0 \]

2974

\[ {}\left (1+x \right ) y^{\prime } = \left (1-x y^{3}\right ) y \]

2975

\[ {}\left (1+x \right ) y^{\prime } = 1+y+\left (1+x \right ) \sqrt {y+1} \]

2976

\[ {}\left (x +a \right ) y^{\prime } = b x \]

2977

\[ {}\left (x +a \right ) y^{\prime } = b x +y \]

2978

\[ {}\left (x +a \right ) y^{\prime }+b \,x^{2}+y = 0 \]

2979

\[ {}\left (x +a \right ) y^{\prime } = 2 \left (x +a \right )^{5}+3 y \]

2980

\[ {}\left (x +a \right ) y^{\prime } = b +c y \]

2981

\[ {}\left (x +a \right ) y^{\prime } = b x +c y \]

2982

\[ {}\left (x +a \right ) y^{\prime } = y \left (1-a y\right ) \]

2983

\[ {}\left (a -x \right ) y^{\prime } = y+\left (c x +b \right ) y^{3} \]

2984

\[ {}2 x y^{\prime } = 2 x^{3}-y \]

2985

\[ {}2 x y^{\prime }+1 = 4 i x y+y^{2} \]

2986

\[ {}2 x y^{\prime } = y \left (1+y^{2}\right ) \]

2987

\[ {}2 x y^{\prime }+y \left (1+y^{2}\right ) = 0 \]

2988

\[ {}2 x y^{\prime } = \left (1+x -6 y^{2}\right ) y \]

2989

\[ {}2 x y^{\prime }+4 y+a +\sqrt {a^{2}-4 b -4 c y} = 0 \]

2990

\[ {}\left (-2 x +1\right ) y^{\prime } = 16+32 x -6 y \]

2991

\[ {}\left (1+2 x \right ) y^{\prime } = 4 \,{\mathrm e}^{-y}-2 \]

2992

\[ {}2 \left (1-x \right ) y^{\prime } = 4 x \sqrt {1-x}+y \]

2993

\[ {}2 \left (1+x \right ) y^{\prime }+2 y+\left (1+x \right )^{4} y^{3} = 0 \]

2994

\[ {}3 x y^{\prime } = 3 x^{\frac {2}{3}}+\left (1-3 y\right ) y \]

2995

\[ {}3 x y^{\prime } = \left (2+x y^{3}\right ) y \]

2996

\[ {}3 x y^{\prime } = \left (1+3 x y^{3} \ln \relax (x )\right ) y \]

2997

\[ {}x^{2} y^{\prime } = -y+a \]

2998

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}+x y \]

2999

\[ {}x^{2} y^{\prime } = a +b x +c \,x^{2}-x y \]

3000

\[ {}x^{2} y^{\prime }+\left (-2 x +1\right ) y = x^{2} \]